New from ISS!

ChronosDFD for lifetime measurements in complex decays in less than 1 second

ChronosDFD is fully-automated through Vinci, a user-friendly, Windows-based software package.

Key features of ChronosDFD include:

  • Flexible instrument configuration with a variety of light sources (laser diodes, LEDs and Ti:Sapphire laser)
  • A compact footprint and short optical path length for maximum sensitivity and efficient light coupling into the sample
  • Second to picosecond lifetime measurement capabilities
  • Full automation of instrument components including: cuvette holder, polarizers, shutters, filterwheel, monochromators and stirrers
  • PC-controlled integration of temperature path, titrator, stopped-flow apparatus and pressure pump
  • Upgradable to a full steady-state instrument
  • T-format and parallel beam optical design for fast and precise polarization measurements
  • Powered by Vinci-Multidimensional Fluorescence Spectroscopy

Specifications for ChronosDFD

Light Source
  • Laser diodes (nm): 370, 405, 436, 473, 635, 690, 780, 830
  • LEDs (nm): 280, 300, 335, 345, 460, 500, 520
  • Pulsed Lasers: Supercontinuum, Ti:Sapphire, Pulsed Laser Diodes
Focusing & Collection Geometry Parallel beam design for precise polarization measurements
Polarizers UV grade Glan-Thompson with L/A=2.0
Detectors
  • PMT
  • hybrid PMT
  • MCP
  • APD
Detection Modes Photon counting electronics
Wavelength Range 200 nm to 1700nm (detector dependent)
Max Counts Range Up to 13 million counts/s (using hybrid detectors)
Lifetime Measurements Range 10-12 sec to 1 sec,
(range selectable through software)
OS Requirements Windows 10
Power Requirements Universal power input: 110-240 V, 50/60 Hz, 400 VAC
Dimensions 540 mm (L) x 425 mm (W) x 235 mm (H)
Weight 25 kg

Schematic Diagram for ChronosDFD

Measurement Examples from ChronosDFD

Fluorescein in Propylene Glycol

Frequency-domain anisotropy decays (Differential Polarized Phase Angle and Amplitude Ratio) of Fluorescein in propylene glycol measured on ChronosDFD using an excitation wavelength of 470-nm (Xenon lamp). The emission was collected using an OG530 long-pass filter. Calculated values for &thera; = 5.3 ns with R0 = 0.40 and τ = 4 ns, T = 27-28°C.

BodipyFL in Water

Frequency responses (phase and modulation) of BodipyFL in water acquired on ChronosDFD using a 471-nm laser diode. The emission was collected through a high pass filter 520KV. The data is best fitted with a single exponential decay time of 5.87 ns (x2 = 0.97).

Biochemistry & Molecular Biology (Membranes, Nucleic Acids, Proteins)

Cotranslational Protein Folding Within the Ribosome Tunnel Influences Trigger-factor Recruitment.
Lin, K.F., Sun, C.S., Huang, Y.C., Chan, S.I., Koubek, J., Wu, T.H., Huang, J.J.
Biophys J., 2012, 102(12), 2818-27.
The N-terminus of TDP-43 Promotes Its Oligomerization and Enhances DNA Binding Affinity.
Chang, C.K., Wu, T.H., Wu, C.Y., Chiang, M.H., Toh, E.K., Hsu, Y.C., Lin, K.F., Liao, Y.H., Huang, T.H., Huang, J.J.
Biochem Biophys Res Commun., 2012, 425(2), 219-24.
Efficient Isolation of Pseudomonas Aeruginosa Type III Secretion Translocators and Assembly of Heteromeric Transmembrane Pores in Model Membranes.
Romano, F.B., Rossi, K.C., Savva, C.G., Holzenburg, A., Clerico, E.M., Heuck, A.P.
Biochemistry., 2011, 50(33), 7117-31.
Production of Ribosome-released Nascent Proteins With Optimal Physical Properties.
Ziehr, D.R., Ellis, J.P., Culviner, P.H., Cavagnero, S.
Anal Chem., 2010, 82(11), 4637-43.
Excited-state Lifetime Studies of the Three Tryptophan Residues in the N-lobe of Human Serum Transferrin
James, N.G., Ross, J.A., Mason, A.B., Jameson, D.M.
Protein Science, 2010, 19, 99-110.
Confined Dynamics of a Ribosome-bound Nascent Globin: Cone Angle Analysis of Fluorescence Depolarization Decays in the Presence of Two Local Motions.
Ellis, J.P., Culviner, P.H., Cavagnero, S.
Protein Sci., 2009, 18(10), 2003-15.
Structural and Thermodynamic Characterization of T4 Lysozyme Mutants and the Contribution of Internal Cavities to Pressure Denaturation.
Ando, N., Barstow, B., Baase, W.A., Fields, A., Matthews, B.W., Gruner, S.M.
Biochemistry., 2008, 47(42), 11097-109.
Chain Dynamics of Nascent Polypeptides Emerging From the Ribosome.
Ellis, J.P., Bakke, C.K., Kirchdoerfer, R.N., Jungbauer, L.M., Cavagnero, S.
ACS Chem Biol., 2008, 3(9), 555-66.
Fructose-1,6-bisphosphate Acts Both as an Inducer and as a Structural Cofactor of the Central Glycolytic Genes Repressor (CggR).
Zorrilla, S., Chaix, D., Ortega, A., Alfonso, C., Doan, T., Margeat, E., Rivas, G., Aymerich, S., Declerck, N., Royer, C.A.
Biochemistry., 2007, 46(51), 14996-5008.
Inducer-Modulated Cooperative Binding of the Tetrameric CggR Repressor to Operator DNA
Zorrilla, S., Doan, T., Alfonso, C., Margeat, E., Ortega, A., Rivas, G., Aymerich, S., Royer, C.A., Declerck, N.
Biophsyical J., 2007, 92(9), 3215-3227.
Hydration of the Folding Transition State Ensemble of a Protein.
Brun, L., Isom, D.G., Velu, P., Garc�a-Moreno, B., Royer, C.A.
Biochemistry., 2006, 45(11), 3473-80.
Time-resolved Fluorescence Anisotropy Studies Show Domain-specific Interactions of Calmodulin With IQ Target Sequences of Myosin V.
Bayley, P., Martin, S., Browne, P., Royer, C.
Eur Biophys J., 2003, 32(2), 122-7.
Reorientational Dynamics of Enzymes Adsorbed on Quartz: A Temperature-Dependent Time-Resolved TIRF Anisotropy Study
Czeslik, C., Royer, C., Hazlett, T., Mantulin, W.
Biophys. J., 2003, 84, 2533-2541.
Equilibrium Binding of Estrogen Receptor With DNA Using Fluorescence Anisotropy.
Ozers, M.S., Hill, J.J., Ervin, K., Wood, J.R., Nardulli, A.M., Royer, C.A., Gorski, J.
J Biol Chem., 1997, 272(48), 30405-11.

Environmental Studies

Real-Time Determination of Picomolar Free Cu(II) in Seawater Using a Fluorescence-Based Fiber Optic Biosensor
Zeng, H.-H., Thompson, R. B., Maliwal, B. P., Fones, G. R., Moffett, J. W., Fierke, C. A.
Anal. Chem., 2003, 75(24), 6807-6812.

Pharmaceutical Chemistry

Characterization of Fluorinated Catansomes: A Promising Vector in Drug-delivery.
Rosholm, K.R., Arouri, A., Hansen, P.L., Gonz�lez-P�rez, A., Mouritsen, O.G.
Langmuir., 2012, 28(5), 2773-81.
Indocyanine Green-Loaded Biodegradable Nanoparticles: Preparation, Physicochemical Characterization and in Vitro Release
Saxena, V., Sadoqi, M., Shao., J.
Int. J. Pharm., 2004, 278(2), 293-301.
Enhanced Photo-Stability, Thermal-Stability and Aqueous-Stability of Indocyanine Green in Polymeric Nanoparticulate Systems
Saxena, V., Sadoqi, M., Shao., J.
J. Photochem. Photobiol., 2004, 74(1) 29-38.
Degradation Kinetics of Indocyanine Green in Aqueous Solution
Saxena, V., Sadoqi, M., Shao., J.
J. Pharm Sci.,2003, 92(10), 2090-2097.

Physical Chemistry

Developing Red-emissive Ruthenium(II) Complex-based Luminescent Probes for Cellular Imaging.
Zhang, R., Ye, Z., Yin, Y., Wang, G., Jin, D., Yuan, J., Piper, J.A.
Bioconjug Chem., 2012, 23(4), 725-33.
Noncovalent Assembly of a Metalloporphyrin and an Iron Hydrogenase Active-site Model: Photo-induced Electron Transfer and Hydrogen Generation.
Li, X., Wang, M., Zhang, S., Pan, J., Na, Y., Liu, J., Akermark, B., Sun, L.
J Phys Chem B., 2008, 112(27), 8198-202.

Sensors

Water Soluble Indodicarbocyanine Dyes Based on 2,3-dimethyl-3-(4-sulfobutyl)-3H-indole-5-sulfonic Acid
Markova, L.I., Fedyunyayeva, I.A., Povrozin, Y.A., Semenova, O.M., Khabuseva, S.U., Terpetschnig, E.A., Patsenker, L.D.
Dyes and Pigments, 2013, 96(2), 535-46.
Seta-633 - a NIR Fluorescence Lifetime Label For Low-Molecular-Weight Analytes
Povrozin, Y.A., Kolosova, O.S., Obukhova, O.M., Tatarets, A.L., Sidorov, V.I., Terpetschnig, E.A., Patsenker, L.D.
Bioconjug Chem., 2009, 20(9), 1807-12.
Near-Infrared, Dual-Ratiometric Fluorescent Label for Measurement of pH
Povrozin, Y.A., Markova, L.I., Tatarets, A.L., Sidorov, V.I., Terpetschnig, E.A., Patsenker, L.D.
Anal Biochem., 2009, 390(2), 136-40.
Synthesis of Water-Soluble, Ring-Substituted Squaraine Dyes and Their Evaluation as Fluorescent Probes and Labels
Tatarets, A.L., Fedyunyayeva, I.A., Dyubko, T.S., Povrozin, Y.A., Doroshenko, A.O., Terpetschnig, E.A., Patsenker, L.D.
Anal Chim Acta., 2006, 570(2), 214-23.
Fatty Acid Sensor for Low-Cost Lifetime-Assisted Ratiometric Sensing Using a Fluorescent Fatty Acid Binding Protein
Bartolome, A., Bardliving, C., Rao G., Tolosa L.
Analytical Biochemistry, 2005, 34(1), 133-139.
Dual-Labeled Glucose Binding Protein for Ratiometric Measurements of Glucose
Ge, X., Tolosa, L., Rao, G.
Analytical Chemistry, 2004, 76(5), 1403-10.
Reagentless Optical Sensing of Glutamine Using a Dual-Emitting Glutamine-Binding Protein
Tolosa, L., Ge, X., Rao, G.
Analytical Biochemistry, 2003, 314(2), 199-205.

Accessories available for ChronosDFD

The following accessories are available for ChronosDFD. For more information please visit our Fluorescence Accessories page.

  • Laser Diodes & Light Emitting Diodes (Modulated)
  • Lamp Mono-Assembly
  • Two-cuvette Sample Compartment
  • Three-cuvette Sample Compartment
  • Four-cuvette, Peltier-controlled, Sample Compartment
  • Dewar Flask
  • The HPCell™ High Pressure Cell System
  • Total Internal Reflection Fluorescence (TIRF) Flow Cell
  • Variable-angle, Front-Surface Sample Compartment
  • Vacuum Chamber
  • Microwell Plate Reader Accessory
  • UV Glan-Thompson Prism Polarizers
  • Titrators (1 and 2 syringe)
  • Stopped-Flow Devices
  • Fiber Optics
  • Computer-controlled Filter Wheels
  • Microchannel Plate Detector