New from ISS!

ChronosDFD for lifetime measurements in complex decays in less than 1 second

ChronosDFD is fully-automated through Vinci, a user-friendly, Windows-based software package.

Key features of ChronosDFD include:

  • Flexible instrument configuration with a variety of light sources (laser diodes, LEDs and Ti:Sapphire laser)
  • A compact footprint and short optical path length for maximum sensitivity and efficient light coupling into the sample
  • Second to picosecond lifetime measurement capabilities
  • Full automation of instrument components including: cuvette holder, polarizers, shutters, filterwheel, monochromators and stirrers
  • PC-controlled integration of temperature path, titrator, stopped-flow apparatus and pressure pump
  • Upgradable to a full steady-state instrument
  • T-format and parallel beam optical design for fast and precise polarization measurements
  • Powered by Vinci-Multidimensional Fluorescence Spectroscopy

Specifications for ChronosDFD

Light Source
  • Laser diodes (nm): 370, 405, 436, 473, 635, 690, 780, 830
  • LEDs (nm): 280, 300, 335, 345, 460, 500, 520
  • Pulsed Lasers: Supercontinuum, Ti:Sapphire, Pulsed Laser Diodes
Focusing & Collection Geometry Parallel beam design for precise polarization measurements
Polarizers UV grade Glan-Thompson with L/A=2.0
Detectors
  • PMT
  • hybrid PMT
  • MCP
  • APD
Detection Modes Photon counting electronics
Wavelength Range 200 nm to 1700nm (detector dependent)
Max Counts Range Up to 13 million counts/s (using hybrid detectors)
Lifetime Measurements Range 10-12 sec to 1 sec,
(range selectable through software)
OS Requirements Windows 10
Power Requirements Universal power input: 110-240 V, 50/60 Hz, 400 VAC
Dimensions 540 mm (L) x 425 mm (W) x 235 mm (H)
Weight 25 kg

Schematic Diagram for ChronosDFD

Measurement Examples from ChronosDFD

Fluorescein in Propylene Glycol

Frequency-domain anisotropy decays (Differential Polarized Phase Angle and Amplitude Ratio) of Fluorescein in propylene glycol measured on ChronosDFD using an excitation wavelength of 470-nm (Xenon lamp). The emission was collected using an OG530 long-pass filter. Calculated values for &thera; = 5.3 ns with R0 = 0.40 and τ = 4 ns, T = 27-28°C.

BodipyFL in Water

Frequency responses (phase and modulation) of BodipyFL in water acquired on ChronosDFD using a 471-nm laser diode. The emission was collected through a high pass filter 520KV. The data is best fitted with a single exponential decay time of 5.87 ns (x2 = 0.97).

Biochemistry & Molecular Biology (Membranes, Nucleic Acids, Proteins)

Solution-Binding and Molecular Docking Approaches Combine to Provide an Expanded View of Multidrug Recognition in the MDR Gene Regulator BmrR.
Gunio, D., Froehlig, J., Pappas, K., Ferguson, U., Wade, H.
J Chem Inf Model. 2016 Feb 22;56(2):377-89. doi: 10.1021/acs.jcim.5b00704. Epub 2016 Feb 8.
Strain Promoted Click Chemistry of 2- or 8-Azidopurine and 5-Azidopyrimidine Nucleosides and 8-Azidoadenosine Triphosphate with Cyclooctynes. Application to Living Cell Fluorescent Imaging.
Zayas, J., Annoual, M., Das, J.K., Felty, Q., Gonzalez, W.G., Miksovska, J., Sharifai, N., Chiba, A., Wnuk, S.F.
Bioconjug Chem. 2015 Aug 19;26(8):1519-32. doi: 10.1021/acs.bioconjchem.5b00300. Epub 2015 Jul 2.
Amphiphilic Residues 29-44 of DREAM N-Termini Mediate Calmodulin:DREAM Complex Formation.
Gonzalez, W.G., Arango, A.S., Miksovska, J.
Biochemistry. 2015 Jul 21;54(28):4391-403. doi: 10.1021/acs.biochem.5b00251. Epub 2015 Jul 7.
Cotranslational Protein Folding Within the Ribosome Tunnel Influences Trigger-factor Recruitment.
Lin, K.F., Sun, C.S., Huang, Y.C., Chan, S.I., Koubek, J., Wu, T.H., Huang, J.J.
Biophys J., 2012, 102(12), 2818-27.
The N-terminus of TDP-43 Promotes Its Oligomerization and Enhances DNA Binding Affinity.
Chang, C.K., Wu, T.H., Wu, C.Y., Chiang, M.H., Toh, E.K., Hsu, Y.C., Lin, K.F., Liao, Y.H., Huang, T.H., Huang, J.J.
Biochem Biophys Res Commun., 2012, 425(2), 219-24.
Efficient Isolation of Pseudomonas Aeruginosa Type III Secretion Translocators and Assembly of Heteromeric Transmembrane Pores in Model Membranes.
Romano, F.B., Rossi, K.C., Savva, C.G., Holzenburg, A., Clerico, E.M., Heuck, A.P.
Biochemistry., 2011, 50(33), 7117-31.
Production of Ribosome-released Nascent Proteins With Optimal Physical Properties.
Ziehr, D.R., Ellis, J.P., Culviner, P.H., Cavagnero, S.
Anal Chem., 2010, 82(11), 4637-43.
Excited-state Lifetime Studies of the Three Tryptophan Residues in the N-lobe of Human Serum Transferrin
James, N.G., Ross, J.A., Mason, A.B., Jameson, D.M.
Protein Science, 2010, 19, 99-110.
Confined Dynamics of a Ribosome-bound Nascent Globin: Cone Angle Analysis of Fluorescence Depolarization Decays in the Presence of Two Local Motions.
Ellis, J.P., Culviner, P.H., Cavagnero, S.
Protein Sci., 2009, 18(10), 2003-15.
Structural and Thermodynamic Characterization of T4 Lysozyme Mutants and the Contribution of Internal Cavities to Pressure Denaturation.
Ando, N., Barstow, B., Baase, W.A., Fields, A., Matthews, B.W., Gruner, S.M.
Biochemistry., 2008, 47(42), 11097-109.
Chain Dynamics of Nascent Polypeptides Emerging From the Ribosome.
Ellis, J.P., Bakke, C.K., Kirchdoerfer, R.N., Jungbauer, L.M., Cavagnero, S.
ACS Chem Biol., 2008, 3(9), 555-66.
Fructose-1,6-bisphosphate Acts Both as an Inducer and as a Structural Cofactor of the Central Glycolytic Genes Repressor (CggR).
Zorrilla, S., Chaix, D., Ortega, A., Alfonso, C., Doan, T., Margeat, E., Rivas, G., Aymerich, S., Declerck, N., Royer, C.A.
Biochemistry., 2007, 46(51), 14996-5008.
Inducer-Modulated Cooperative Binding of the Tetrameric CggR Repressor to Operator DNA
Zorrilla, S., Doan, T., Alfonso, C., Margeat, E., Ortega, A., Rivas, G., Aymerich, S., Royer, C.A., Declerck, N.
Biophsyical J., 2007, 92(9), 3215-3227.
Hydration of the Folding Transition State Ensemble of a Protein.
Brun, L., Isom, D.G., Velu, P., García-Moreno, B., Royer, C.A.
Biochemistry., 2006, 45(11), 3473-80.
Time-resolved Fluorescence Anisotropy Studies Show Domain-specific Interactions of Calmodulin With IQ Target Sequences of Myosin V.
Bayley, P., Martin, S., Browne, P., Royer, C.
Eur Biophys J., 2003, 32(2), 122-7.
Reorientational Dynamics of Enzymes Adsorbed on Quartz: A Temperature-Dependent Time-Resolved TIRF Anisotropy Study
Czeslik, C., Royer, C., Hazlett, T., Mantulin, W.
Biophys. J., 2003, 84, 2533-2541.
Equilibrium Binding of Estrogen Receptor With DNA Using Fluorescence Anisotropy.
Ozers, M.S., Hill, J.J., Ervin, K., Wood, J.R., Nardulli, A.M., Royer, C.A., Gorski, J.
J Biol Chem., 1997, 272(48), 30405-11.

Environmental Studies

Real-Time Determination of Picomolar Free Cu(II) in Seawater Using a Fluorescence-Based Fiber Optic Biosensor
Zeng, H.-H., Thompson, R. B., Maliwal, B. P., Fones, G. R., Moffett, J. W., Fierke, C. A.
Anal. Chem., 2003, 75(24), 6807-6812.

Pharmaceutical Chemistry

Characterization of Fluorinated Catansomes: A Promising Vector in Drug-delivery.
Rosholm, K.R., Arouri, A., Hansen, P.L., Gonz´lez-Pérez, A., Mouritsen, O.G.
Langmuir., 2012, 28(5), 2773-81.
Indocyanine Green-Loaded Biodegradable Nanoparticles: Preparation, Physicochemical Characterization and in Vitro Release
Saxena, V., Sadoqi, M., Shao., J.
Int. J. Pharm., 2004, 278(2), 293-301.
Enhanced Photo-Stability, Thermal-Stability and Aqueous-Stability of Indocyanine Green in Polymeric Nanoparticulate Systems
Saxena, V., Sadoqi, M., Shao., J.
J. Photochem. Photobiol., 2004, 74(1) 29-38.
Degradation Kinetics of Indocyanine Green in Aqueous Solution
Saxena, V., Sadoqi, M., Shao., J.
J. Pharm Sci.,2003, 92(10), 2090-2097.

Physical Chemistry

Development and Characterization of a Fluorescent Tracer for the Free Fatty Acid Receptor 2 (FFA2/GPR43).
Hansen, A.H., Sergeev, E., Pandey, S.K., Hudson, B.D., Christiansen, E., Milligan, G., Ulven, T.
J Med Chem. 2017 Jul 13;60(13):5638-5645. doi: 10.1021/acs.jmedchem.7b00338. Epub 2017 Jun 16.
Characterization of the Photophysical, Thermodynamic, and Structural Properties of the Terbium(III)-DREAM Complex.
Gonzalez, W.G., Ramos, V., Diaz, M., Garabedian, A., Molano-Arevalo, J.C., Fernandez-Lima, F., Miksovska, J.
Biochemistry. 2016 Mar 29;55(12):1873-86. doi: 10.1021/acs.biochem.6b00067. Epub 2016 Mar 7.
Development and Characterization of a Potent Free Fatty Acid Receptor 1 (FFA1) Fluorescent Tracer.
Christiansen, E., Hudson, B.D., Hansen, A.H., Milligan, G., Ulven, T.
J Med Chem. 2016 May 26;59(10):4849-58. doi: 10.1021/acs.jmedchem.6b00202. Epub 2016 May 10.
Flavin adenine dinucleotide structural motifs: from solution to gas phase.
Molano-Arevalo, J.C., Hernandez, D.R., Gonzalez, W.G., Miksovska, J., Ridgeway, M.E., Park, M.A., Fernandez-Lima, F.
Anal Chem. 2014 Oct 21;86(20):10223-30. doi: 10.1021/ac5023666. Epub 2014 Sep 29.
Tetraaryl-, pentaaryl-, and hexaaryl-1,4-dihydropyrrolo[3,2-b]pyrroles: synthesis and optical properties.
Krzeszewski, M., Thorsted, B., Brewer, J., Gryko, D.T.
J Org Chem. 2014 Apr 4;79(7):3119-28. doi: 10.1021/jo5002643. Epub 2014 Mar 21.
Graphene oxide as a quencher for fluorescent assay of amino acids, peptides, and proteins.
Li, S., Aphale, A.N., Macwan, I.G., Patra, P.K., Gonzalez, W.G., Miksovska, J., Leblanc, R.M.
ACS Appl Mater Interfaces. 2012 Dec;4(12):7069-75. doi: 10.1021/am302704a. Epub 2012 Dec 3.
Developing Red-emissive Ruthenium(II) Complex-based Luminescent Probes for Cellular Imaging.
Zhang, R., Ye, Z., Yin, Y., Wang, G., Jin, D., Yuan, J., Piper, J.A.
Bioconjug Chem., 2012, 23(4), 725-33.
Ground- and excited-state properties of Zn(II) tetrakis(4-tetramethylpyridyl) pophyrin specifically encapsulated within a Zn(II) HKUST metal-organic framework.
Larsen, R.W., Miksovska, J., Musselman, R.L., Wojtas, L.
J Phys Chem A. 2011 Oct 27;115(42):11519-24. doi: 10.1021/jp2064408. Epub 2011 Sep 28.
Seta-633 - a NIR fluorescence lifetime label for low-molecular-weight analytes.
Povrozin, Y.A., Kolosova, O.S., Obukhova, O.M., Tatarets, A.L., Sidorov, V.I., Terpetschnig, E.A., Patsenker, L.D.
Bioconjug Chem. 2009 Sep;20(9):1807-12. doi: 10.1021/bc9002458.
Noncovalent Assembly of a Metalloporphyrin and an Iron Hydrogenase Active-site Model: Photo-induced Electron Transfer and Hydrogen Generation.
Li, X., Wang, M., Zhang, S., Pan, J., Na, Y., Liu, J., Akermark, B., Sun, L.
J Phys Chem B., 2008, 112(27), 8198-202.

Sensors

Water Soluble Indodicarbocyanine Dyes Based on 2,3-dimethyl-3-(4-sulfobutyl)-3H-indole-5-sulfonic Acid
Markova, L.I., Fedyunyayeva, I.A., Povrozin, Y.A., Semenova, O.M., Khabuseva, S.U., Terpetschnig, E.A., Patsenker, L.D.
Dyes and Pigments, 2013, 96(2), 535-46.
Seta-633 - a NIR Fluorescence Lifetime Label For Low-Molecular-Weight Analytes
Povrozin, Y.A., Kolosova, O.S., Obukhova, O.M., Tatarets, A.L., Sidorov, V.I., Terpetschnig, E.A., Patsenker, L.D.
Bioconjug Chem., 2009, 20(9), 1807-12.
Near-Infrared, Dual-Ratiometric Fluorescent Label for Measurement of pH
Povrozin, Y.A., Markova, L.I., Tatarets, A.L., Sidorov, V.I., Terpetschnig, E.A., Patsenker, L.D.
Anal Biochem., 2009, 390(2), 136-40.
Synthesis of Water-Soluble, Ring-Substituted Squaraine Dyes and Their Evaluation as Fluorescent Probes and Labels
Tatarets, A.L., Fedyunyayeva, I.A., Dyubko, T.S., Povrozin, Y.A., Doroshenko, A.O., Terpetschnig, E.A., Patsenker, L.D.
Anal Chim Acta., 2006, 570(2), 214-23.
Fatty Acid Sensor for Low-Cost Lifetime-Assisted Ratiometric Sensing Using a Fluorescent Fatty Acid Binding Protein
Bartolome, A., Bardliving, C., Rao G., Tolosa L.
Analytical Biochemistry, 2005, 34(1), 133-139.
Dual-Labeled Glucose Binding Protein for Ratiometric Measurements of Glucose
Ge, X., Tolosa, L., Rao, G.
Analytical Chemistry, 2004, 76(5), 1403-10.
Reagentless Optical Sensing of Glutamine Using a Dual-Emitting Glutamine-Binding Protein
Tolosa, L., Ge, X., Rao, G.
Analytical Biochemistry, 2003, 314(2), 199-205.

Accessories available for ChronosDFD

Sample Compartments

We offer a wide range of Sample Compartments, including one-to-four cuvette holders, an HPCell System and Total Internal Reflection Fluorescence (TIRF) Flow Cell. Learn more >

Polarizers

Learn more about the quality of our UV Glan-Taylor and UV Glan-Thompson Prism Polarizers, and Beam Splitter. Learn more >

Fiber Optics

Learn more about our Chemically Activated Fiber Tip and Fiber Optics, Complete with XY Control and Dichroic Mirror. Learn more >

Microwell Plate Reader

Learn more about our microwell plate reader, capable of using 96- and 384-well plates. Learn more >

Titrators

We offer a computer-controlled titrators for use with our fluorescence instrumentation product line. Learn more >

Stopped-Flow Apparatus

Our versatile spectrofluorimeters can be interfaced to many stopped-flow apparatuses. Learn more >