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We present a study of intramuscular motion during contraction of skeletal muscle myofibrils. Myofibrillar
actin was labeled with fluorescent dye so that the ratio of fluorescently labeled to unlabeled protein was
1:10°. Such sparse labeling assured that there was on average only one actin-marker present in the focus at a
given time. From the intensity signal in the two orthogonal detection channels, significant fluctuations,
similar to fluorescent burst in diffusion-based single-molecule detection schemes, were identified via a
threshold algorithm and analyzed with respect to their intensity and polarization. When only rigor complexes
were formed, the fluctuations of polarized intensity were characterized by unimodal Gaussian photon
distributions. During contraction, in contrast, bimodal Gaussian photon distributions were observed above
the rigor background threshold. This suggests that the bimodal Gaussian photon distributions represent pre-
and post-power stroke conformations. Clusters of polarized photons indicated an anisotropy decay of single
actomyosin motors of ~9 s during muscle contraction. This article is part of a Special Issue entitled: 11th
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1. Introduction

The basic cellular function of myosin motor is to deliver ATP-
dependent force impulses to the rope-like actin polymer. Upon binding
of ATP, the myosin head detaches from an old binding site on actin,
reattaches to a new actin monomer, and when ATP is hydrolyzed
changes conformation causing sliding of actin with respect to myosin
[1]. In the experiments presented in this study we labeled actin in
skeletal muscle myofibril with 0.1 nM rhodamine-phalloidin (RP) plus
10 uM unlabeled phalloidin (UP), i.e. only one in 10° molecules was
fluorescently labeled. Since the observable volume (AV,s) of confocal
microscope is ~107'> L, there is on average only one fluorescent
molecule in the AV, at any time, and the Poissonian probability of
detecting more than one labeled actin-marker within the focus of the
laser beam was negligible. The green cylinder in Fig. 1 represents the
volume illuminated by the laser. Diameter of the cylinder, 2w®,, is equal
to the diameter of the confocal pinhole (50 um) divided by the
magnification of the objective (40x) and is 1.2 pm. The AV,ps has height
Zo, equal to the thickness of a typical myofibril. Taking this thickness as
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1 um, AVps = w2z, = 1 um? (alternatively, the volume is often taken as
an ellipsoid of revolution with the volume 4/3m®2z,). This is
approximately equal to the volume of a half-sarcomere; indeed, the
length, width and height of a typical half-sarcomere (HS) are 1, 1, and
0.5 um, respectively and therefore its volume ~1 um? (105 L). Thus,
the signal detected by the instrument is contributed only by the
fluorescent molecules in one half-sarcomere. This number can be
calculated by realizing that the concentration of actin in muscle is as high
as 0.6 mM |[2]. Therefore, there are ~60,000 actin protomers in one HS.
Recall that the myofibril was labeled with 0.1 nM fluorescent phalloidin
plus 10 pM unlabeled phalloidin, so only one in 100,000 actin protomers
carried fluorescent phalloidin. Thus, the calculation gives 1 fluorescent
actin in the HS =AV,,,.

In rigor muscle, thin filaments are immobilized by strongly bound
cross-bridges (left panel in Fig. 1), a fluorophore (red dot) never
changes orientation or leaves the AV,,s and, consequently, autocor-
relation is flat (bottom left). The situation is different during
contraction (right panel). Here the interaction of cross-bridges with
thin filament is expected to cause a fluorophore to continuously
change orientation. Since the fluorophore is illuminated by linearly
polarized light, the amount of light it absorbs (and re-emits) is
dependent on instantaneous orientation. Moreover, the fluorescent
actin-marker may leave and re-enter the AV,,s as the cross-bridges
pull filaments to the left, and filaments recoil during isometric
contraction to the right. Fluorescence intensity oscillates and autocor-
relation function is non-zero, as illustrated at the bottom right in Fig. 1.
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Fig. 1. Schematic representation of the experiments at different states of muscle fluorophore. A single actin in a sarcomere is labeled with a fluorophore (red). Its fluorescence in the
detection observational volume AV, (green cylinder) is measured for a few seconds. In rigor fluorescence remains constant and autocorrelation function of fluctuations is flat (left
panel). In contraction, the force impulses delivered by cross-bridges to thin filament deform actin filament, changing the orientation of a transition dipole of rhodamine rigidly
attached to actin protomer. As a result, the intensity of polarized fluorescence of rhodamine fluctuates in time. In addition, fluctuation arise because rhodamine may leave and re-
enter AV, as cross-bridges pull filaments to the left, and filaments recoil during isometric contraction to the right. The molecule is pulled to the left by the contractile force and
recoils after pulled by isometric load to the right (right panel). Autocorrelation function is non-zero. See text for details.

The aim of this work was to study dynamic behavior of single
actomyosin complexes during contraction in living skeletal muscle.
The method presented resembles the procedures used in single-
molecule spectroscopy, where significant events are separated from
the background by means of intensity thresh-holding and then
analyzed by probability density function to reveal subpopulations.
Under contraction conditions, all single actomyosin motor molecules
studied revealed skewed time-dependent photon distributions in two
orthogonal polarization detection channels, which were fitted by two
Gaussians. In contrast, all rigor photons were distributed unimodal
Gaussian.

2. Materials and methods
2.1. Chemicals and solutions

Rhodamine-phalloidin (RP) was from Invitrogen (Carlsbad, CA).
All other chemicals including 1-ethyl-3-(3’-dimethylaminopropyl)
carbodiimide (EDC), dithiotreitol (DTT), creatine phosphate and
creatine kinase were from Sigma. EDTA-rigor solution contained
50 mM KCl, 2 mM EDTA, 1 mM DTT, and 10 mM Tris-HCl buffer pH
7.5. Ca-rigor, contracting and relaxing solutions were as described
earlier [3].

2.2. Preparation of myofibrils

Psoas muscles from 6-month-old white New Zealand rabbits were
used. Thin strips of glycerinated muscle were incubated in EDTA-rigor
solution until they turned white (~1 h). The fiber bundle was then
homogenized using a Heidolph Silent Crusher S homogenizer for 20 s
(with a break to cool after 10 s) in Mg?* -rigor solution.

2.3. Sample preparation

Myofibrils were freshly prepared for each experiment. Myofibrils
(1 mg/mL) (~ 4uM actin) were mixed with 0.1 nM rhodamine-
phalloidin plus 10 uM unlabeled phalloidin. Unlabeled phalloidin was
necessary to prevent uneven labeling. If it was not there, the

sarcomeres closest to the tip of the pipette used to add the label
would have contained more chromophores than sarcomeres further
away from the tip. The degree of labeling was 10 uM/0.1
nM= 100,000, i.e. on the average one actin protomer in 10° was
fluorescently labeled. Labeled myofibrils (25 ) were applied to a
coverslip (Menzel-Glaser 20 x 20 mm #1 or Corning #1 25 x 60 mm).
The sample was left on a coverslip for 3 min to allow the myofibrils to
adhere to the glass. The bottom cover slip was covered with a small
coverslip (to prevent drying) and the two were separated by Avery
Hole Reinforcement Stickers. Labeled myofibrils were washed with 5
volumes of the Ca?*-rigor solution by applying the solution to the one
end of the channel and absorbing with #1 filter paper at the other end.

2.4. Cross-linking

Myofibrils irreversibly shorten in contracting solution. To prevent
the shortening the myofibrils (1 mg/mL) were incubated with 20 mM
EDC for 10 min at room temperature according to procedure of
Herrmann et al. [4]. The reaction was stopped by 20 mM DTT. Cross-
linking did not affect ATPase. The lack of shortening was checked by
comparing the length of DIC image of a myofibril before and 100 s
after inducing contraction. Within the limits of measuring accuracy on
the computer screen (~1%), the length always remained unchanged.
Cross-linked myofibrils are a good model for muscle fiber ATPase and
the kinetics of Ca(2+)-activated activity [5]. The large P(i) bursts and
kcat values were the same in cross-linked myofibrils and muscle fibers
[4]. Those results were confirmed by Lionne et al. [6].

2.5. ATPase measurements

Myofibrillar suspension (200 pL of 1 mg/mL) was incubated in
0.1 mM ATP for 30, 60, 90 and 120 s. After the specified time, the
reaction was stopped by 700 uL of 1 mM HCl. The samples were
filtered through a cotton ball in a 1 mL pipette tip. Malachite Green
(MG) reagent (100 pL) from the SensoLyte Phosphatase assay kit
(AnaSpec, San Jose, CA) was added and incubated for 5 min.
Phosphate (10 pL) contained in the kit was dissolved in 190 pL of
deionized water along with 700 L HCl and 100 uL MG reagent and
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used as a standard. Standard (1 mL of 10 uM) contained 10~° moles of
phosphorus. The concentration of phosphate was measured at 650 nm.
Ca**-rigor (200 L) containing 700 pL HCl and 100 pL MG reagent was
used as a blank. [P;] was calculated as mol/1 mol/min = Abs (sample)
[standard mol]/Abs (standard)/[myosin mol]/min. The amount of
myosin in 200 pL of 1 mg/mL myofibrils was taken as 0.2x10~° mol.
The mean = SD of 4 measurements were 3.1+0.8 s, which is a first
order chemical rate constant characterizing the ATPase activity of the
myofibrils for the combination of substrate with the enzyme at low ATP
concentrations. Obviously in the case of the reaction discussed here, so
long the ATP (substrate) concentration was much lower than the
Michaelis constant using the actual concentrations during the catalysis,
the plot of initial velocity against ATP concentration gave a straight line.

2.6. Data collection in live muscle cells by a two-channel ALBA
fluorescence fluctuation spectrometer and imaging system

The experiments were performed using a two-channel Alba-FCS
(ISS, Champaign, IL) confocal system coupled to Olympus IX 71
microscope. The objective was water immersion NA =1.15, 40x. The
excitation was by a 532-nm cw-laser, and the observation was
through a 550-nm long pass filter. The confocal pinhole was 50 pm.
The laser was polarized vertically. The myofibrils were also vertical on
the microscope stage. Inside the ALBA system, orthogonally linearly
polarized analyzers (polarizing filters) were placed before each
single-photon counting avalanche photodiodes (APD Mod SPCM-
AQR-1S, Perkin-Elmer, Vaudereuil, Canada). The emitted fluorescence
of channel 1 (Ch1) and channel 2 (Ch2) was separately focused on the
APD's as shown in Fig. 2. Fluorescence data points were collected
every 10 ms for 20 s.

2.7. Computational procedures and data analysis of photon streams

From the intensity signal in two polarization selective detection
channels, significant fluctuations, similar to fluorescent bursts in
diffusion-based single detection schemes, were identified by the
novel analysis procedure, termed the Fluctuation Analyzer TZ with
respect to their intensity and polarization (see Fig. 3). From the
observed asymmetry in the distribution function, we inferred clear
differences between the fluctuations under rigor conditions and
contraction conditions. All contraction data showed the presence of
additional dynamic modes in the orientation motion of actin filaments
above the rigor fluctuations in intensity signal in two polarization
selective detection channels (see Figs. 4 and 5). Since we studied
intramuscular motion during contraction of skeletal muscle myofi-
brils, all rigor fluctuations were considered as ‘background’ and
subtracted from the contraction data. By means of intensity thresh-
holding as it resembles the procedures used in standard single-
molecule spectroscopy, significant events were separated from the
background and then analyzed by a histogram or probability density
function to reveal subpopulations. The choice of the threshold level
had no effect on the statistics of the fluctuation analysis as we
demonstrate in Figs. 4 and 5. The fluctuation statistics of the
actomyosin behavior was not distorted by this approach, but for
clarity of presentations we subtracted rigor fluctuations in contraction
data.

This work presents a study of the dynamics of skeletal muscle
myofibrils using a novel fluorescence fluctuation spectroscopy
approach. Specifically, raw photon count data from each channel
were collected using Vista software (ISS, Champaign, IL). The data
were exported for analysis with the software program, the TZ
Fluctuation Analyzer, developed at ISS. Briefly, the collected
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Fig. 2. 1SS dual channel FCS and Confocal image system with scanning mirrors. The optical setup was used in this single-molecule study of fluorescently labeled actin-markers that are
immobilized by attachment to myofibrils (thick filaments) in the living skeletal muscle cell.
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fluorescence photon stream data are analyzed by calculating the
correlation function (FCS) or photon counts distribution (PCH). The TZ
Fluctuation Analyzer analyzes the photon stream data uniquely by
looking for photon counts fluctuations. Given the fluorescence photon
stream data as input, in the format of photon counts for each time bin,
the Fluctuation Analyzer first searches for the peak-like characteristics
in the data, where photon counts increase and then decrease. If the
photon counts at the local maximum are above a certain threshold
level, the software considers it as a fluctuation and saves the time
position and photon counts of the local maximum. The Fluctuation
Analyzer also saves the time position of the start and the end of each
peak shape. Once the search of fluctuations is completed, the time
position and intensity values of the found fluctuations can be further
analyzed for statistics of the fluctuations, e.g., distribution of number
of fluctuations over measurement time, distribution of number of
fluctuations over photon counts, and distribution of number of
fluctuations over time-in-between fluctuations (off-times). From
those distributions, one can calculate the probability function and
probability density function of the fluctuations. To fit the observed
distributions with theoretical models, both linear regression and non-
linear regression routines are implemented in the software.

When the photon stream data are collected with two detection
channels and polarizing filters (polarizers, see subsection “Data collection
in live muscle cells by a two-channel ALBA Fluorescence Fluctuation
Spectrometer and Imaging System,” the software searches for fluctuations
in each channel, and provides the option of calculating the polarization
and anisotropy for fluctuations when they occur in both channels
simultaneously. The fluctuations can be further analyzed for distributions.
We also corrected the polarization and anisotropy values, respectively, for
the numerical aperture of the objective NA=1.15 (the effective aperture
was even smaller for the excitation) and the refractive index inside muscle
cells as analyzed by Axelrod [7]. However, the corrections only varied on
average by 3.47% over the data points of a measurement, e.g. over 546 data
points. Therefore, we use uncorrected time-dependent data.

We present frequency curves of photon events by binned
histograms. Binned histograms of photons and continuous variate
photon populations are not depicting the same information. In the
histograms, the area of each bin (box) is proportional to the frequency
which, in this case, is the number of measured polarization dependent
fluorescence fluctuations within a given bin (box)-width. Instead of
the frequency f; of a variate value X; as in a box of a histogram, we also
considered the frequency of variate values in a narrow strip lying
between x and x+dx. This frequency is f(x)dx. The frequency of
variate values that lie anywhere between x =a and x=b is the

integral f::: f(x)dx. Then, the total frequency, i.e. the total number of
individual fluctuations in the distribution, was _[f: . f(x)dx. The

probability that an individual fluctuation selected at random had a
variate value between x and x + dx was equal to the portion of the
total frequency with a variate value between x and x4 dx. This

proportion was f’;}’&‘f;x = p(x). The quantity p(x) is the probability
density function of the photon distribution. It was analogous to the
p1=f/(fi+fo+...+f.) of a countable (finite) photon distribution
consisting of f; individual fluctuations with variate value X, of f, with
variate value X and so on up to f, with variate value X,. Continuous
populations of photon events have simple formulas, which enable
properties to be calculated simply and quickly.

The polarized fluorescence intensity fluctuations are spread out
along all intensity regions. By means of intensity thresh-holding,
significant events were separated from the background to reveal
subpopulations. Because the overall photon count in contraction data
was about 2-fold greater than in rigor data we did not have to apply a
linear transformation (operator) between data vector spaces in order
to preserve the operation of data vector addition in the original data.
Even though we implemented a linear operator for data transforma-
tion into the software package Fluctuation Analyzer TZ, we were able

to simply subtract the rigor fluctuations from contraction data
without changing the statistics of preferred orientational motion of
actin filaments under contraction conditions.

2.8. Testing of association between anisotropy and time in subset of photons
showing slow dynamic relaxation behavior in actomyosin motors

We used the linear regression model to measure the association
between anisotropy and time. R? is the squared product-moment
correlation coefficient r, also called Pearson's r. The higher the values
of R?, the better the agreement between measured data points and the
theoretical curves. We can allow for the possibility that the number n
of data points is small (n<10) by testing the significance of a non-zero
%_ which is distributed approximately as
Student's distribution with v=n — 2 degrees of freedom, does not
depend on the original distribution of the anisotropy and time values.
The decision criterion reads: |t| > t,.,,—Ho rejected, where 1 — atis the
significant level (confidence interval) for the rejection of no
correlation Hy between anisotropy and time in the subset of polarized
photons. The test is one-tailed because significance is only indicated if
r is negative.

values of r: t =1

2.9. Measuring anisotropy in solution

Fluorescence anisotropies in solutions were measured by time-
domain technique using FluoTime 200 fluorometer (PicoQuant
GmbH, Berlin, Germany). The excitation was by a 475-nm pulsed
laser diode, and the observation was through a monochromator at
590 nm with a supporting 590-nm long wave pass filter. The FWHM of
pulse response function was 68 ps. Time resolution was better than
10 ps. The intensity decays were analyzed in terms of a multi-
exponential model using FluoFit software (PicoQuant GmbH).

2.10. Rotation of rhodamine-phalloidin bound to F-actin

We checked that the measured orientation of the transition dipole
of the fluorophore reflects the orientation of the protein. To this end,
we compared anisotropy of RP with the anisotropy of RP bound to F-
actin. The decay of the anisotropy of RP was best fitted by a single
exponent in which 100% of the signal was contributed by the decay
time of 0.519 ns. This is consistent with the rotation of a molecule of
M,,=1250. No independent rotation of rhodamine moiety was
observed. The best fit of the decay of anisotropy of RP bound to thin
filaments was bi-exponential with correlation times of 0.665 and
36.8 ns. The relative contributions were 13.7 and 86.3%, respectively.
The short correlation time is due to the rotation of rhodamine-
phalloidin and the long one to the rotation of F-actin oligomers. Thus
over 86% of fluorescent phalloidin is immobilized by F-actin.

2.11. Notation

Following the original notation of Tregear and Mendelson [8], the
first and second subscripts in the polarized intensity indicate the
direction of excitation and emission polarization with respect to the
laboratory frame of reference. Myofibrils were always vertical with
respect to the laboratory frame of reference. For example Iyy indicates
that the myofibril was illuminated with vertically polarized light
(parallel to the axis of muscle) and that the intensity was detected
through a polarizer oriented vertically (parallel to the axis of the muscle).

3. Results

The orientations of the reporter dye within the single actomyosin
motor in working skeletal muscle cells (Fig. 1) were measured by
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fluorescence polarization confocal microscopy (Fig. 2). We used
single-molecule detection to study the time-dependence of molecular
orientation of the actomyosin motor molecules. Fig. 3 depicts
representative fluorescence fluctuation time series of a single
actomyosin motor under rigor and contraction conditions. By
applying vertically polarized exciting light V at 532-nm and detecting
the emission components vertically VV(t)=Ch 2 (pink), and
horizontally polarized, VV(t) =Ch 1 (blue), the fluorophore transition
dipole on actin emitted a time-dependent, spatially anisotropic
polarized signal collected by the two-channel polarization-sensitive
optical system. VV(t) and VV(t) were recorded under identical
experimental conditions except for the emission polarizing settings.
The fluctuations differed in the magnitude and number. The total
emitted fluorescence of the signal is obtained by adding the counts of
both polarization channels for joint polarized intensity fluctuations.
Ch1 + Ch2 (black) represent the most probable parameter value in the
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Fig. 3. Fluorescence fluctuation time series of a single actomyosin motor under rigor
and contraction conditions. See text for details. (A) Experimental rigor condition of a
single actomyosin motor in a skeletal muscle cell. Three hundred and twenty-five
fluctuations in Ch1 (channel 1) and Ch2 (channel 2) were measured as function of time.
The maximum magnitude of fluctuations was 5 KHz in Ch1, and it was 6.4 KHz in Ch2.
(B) Experimental contraction condition of a single actomyosin motor in a live skeletal
muscle cell as function of time. Three hundred and fifty-one fluctuations in channel 1
(Ch1) and channel 2 (Ch2) were measured. The maximum magnitude of fluctuations
was 9.1 KHz in Ch1, and it was 12.7 KHz in Ch2.

sense that the probability of observing counts is the highest. We shall
find explicit expression for likelihood functions which make Ch1 + Ch2
a maximum to compare the intensity of the signal between different
trajectories. From the intensity signal in two polarization selective
detection channels Ch1 and Ch2, the polarization values of intensity
fluctuations were obtained (green).

Fig. 4 shows the histogram of measured time-dependent polarized
fluorescence intensity fluctuations of that molecule under rigor
condition. The binned histogram with the frequency of photon events
in a bin (box) provides a better idea of how the photon events vary
inside bins. We describe the probability of finding fluctuations in
terms of a probability distribution which gives the probability of
finding the fluctuation at various approximate polarized fluorescence
intensities. A unimodal Gaussian photon distribution was obtained
with the following parameter values in good agreement with the
experimental observations of the frequency versus photon counts plot
of Fig. 4: maximum intensity value 7.816 4+ 0.695 KHz, y*>=2.054 x
1073, Under contraction condition, the molecule also had a suffi-
ciently strong central tendency as depicted in Fig. 5 with the first and
second central moments of u=14.088 KHz and ,/[i; = 1.836 KHz, but
the measured photon distribution was skewed with (3; =2.635. 3;
Values are simple powers of the first few semi-invariants of the
centered moments, i.e. 3; = u3/u5 and characterizes the shape of the
distribution. (3; signified a measured photon distribution with an
asymmetric tail extending out towards more positive variate values.
The skewed shape of the photon distribution was best fitted by a
trimodal Gaussian distribution with the following parameter values:
first maximum intensity value 10.041 + 0.660 KHz, second maximum
intensity value 13.8504-1.956 KHz, third maximum intensity value
19.661+0.380 KHz, y>=2.657x107>. The trimodal fit was overly
accurate. y? values for the one- and two-modal fits were less accurate
and strengthen the argument for choosing three populations. The
trimodal character of Fig. 5 depended on the differences in
fluorescence fluctuations with respect to intensity and polarization
between Figs. 4 (rigor condition) and 5 (contraction condition). Our
analysis is based on different muscle preparations and performed at
different dates. We obtained the differences between rigor and
contraction conditions in all muscle preparations but we depict in
Figs. 4 and 5 only one. The differences were statistically significant.
The additional two modes above rigor (see Fig. 5) under contraction
conditions were significantly greater by magnitude (photon counts)
and numbers. The overall photon count in Fig. 5 was about 2-fold
greater than in Fig. 4 due to additional dynamic modes in the
orientational motion of actin filaments under contraction conditions.
Choosing three populations and the x? values for the seemingly less
accurate one- and two modes was reproducible in all data analyzed
(for additional explanations see subsection 2.7. Computational
procedures and data analysis of photon streams, first paragraph).
Thus, we could simply subtract the rigor fluctuations from contraction
data without changing the statistics of preferred orientational motion
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Fig. 4. Experimental rigor condition of a single actomyosin motor in a live skeletal
muscle cell. Histogram of measured time-dependent polarized fluorescence intensity
fluctuations.
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Fig. 5. Experimental contraction condition of a single actomyosin motor in a live
skeletal muscle cell. Histogram of measured time-dependent polarized fluorescence
intensity fluctuations.

of actin filaments under contraction. We did not apply a linear
transformation (operator) between data vector spaces in order to
preserve the operation of data vector addition in the original data.

The synopsis of analyzed single actomyosin motor molecules
under rigor and contraction conditions is shown in Table 1. Under
contraction conditions all single actomyosin motor molecules
revealed skewed time-dependent photon distributions, whereas all
rigor photon distributions were unimodal Gaussian. The rigor signal is
contributed by immobile chromophores and therefore is treated here
as background. Even though the unimodal rigor modes are of little
interest in this study, they were present in large numbers under
contraction conditions, and they always yielded the first intensity
maximum of the trimodal Gaussian photon distributions under
contraction. An appropriate approach was subtracting the rigor
background noise in contraction data.

Fig. 6A shows the histogram of measured time-depended
polarized fluorescence intensity fluctuations above the rigor back-
ground threshold of 5.0 KHz in Ch1l and 6.4 KHz in Ch2 for that
particular motor molecule under contraction. A bimodal Gaussian
photon distribution was obtained in very good agreement with
experimental observations of the frequency versus photon counts
plots with the following parameter values: first maximum intensity
value 14.264 4+ 1.665 KHz, second maximum intensity value 19.923 4+
0.183 KHz. This finding has never been demonstrated before. Since
the overall photon count in the measured contraction data was about
2-fold greater than in rigor data, there were enough high count rate
data points that contributed to the analysis by subtraction the rigor
modes from contraction data. This has the advantage of presenting a
ready picture of single actin contraction activity without common

Table 1
Synopsis of characteristic parameters of measured time-dependent photon distribu-
tions of single actomyosin motors in live muscle cells.

Different single actomyosin Central moments Skewness
motor molecules under the - - parameter
experimental conditions of ftin Hz Vi in Hz Br=pd /s
rigor and contraction

No. 1 under rigor 7954 +451 n.a.

No. 1 under contraction 7595 +3718 2.28

No. 2 under rigor 8379 +691 0.04

No. 2 under contraction 9536 43981 0.96

No. 3 under rigor 5121 +581 0.08

No. 3 under contraction 7607 +3491 4.14

No. 4 under rigor 5590 +583 na.

No. 4 under contraction 8782 +3986 1.62

No. 5 under rigor 5364 +593 0.19

No. 5 under contraction 10607 +4504 1.81

No. 6 under rigor 5408 +404 n.a.

No. 6 under contraction 6989 42758 1.64

n.a.: not applicable because of an experimental outliner value. However, the
distribution was still be represented best by a unimodal Gaussian photon distribution.
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Fig. 6. Measured time-dependent polarized fluorescence intensity fluctuations above
the rigor background threshold of 5.0 KHz in channel 1 and 6.4 KHz in channel 2 of
single actomyosin motor molecule. (A) Histogram of polarized photon counts emitted
by the single actomyosin motor molecule. (B) Correlation plot between time-
dependent polarization and total photon counts emitted by the single actomyosin
motor molecule under contraction conditions. The framed photon counts correspond to
the second Gaussian photon distribution in (A) and is further quantified in (C). (C)
Subset of photon distribution in (A) and (B) showing a slow dynamic relaxation
behavior of the emission anisotropy. The regression curve was found for the pairs of
related observations, i.e. for anisotropy and time.

molecular background ‘noise’ originating from rigor modes in
contraction data during measurements. The structural and functional
reason for this is that we found an equal amount of well-defined
orientational background fluctuations (rigor modes of orientational
modes) of single actomyosin motor molecules.

Next, we analyzed polarization above rigor noise. The polarization
P followed the in-plan orientation of the emission dipole moment of
the actomyosin complex. P values of —1 indicated a molecular
orientation along the 90° direction, i.e. the emitted light was totally
polarized in the perpendicular direction and perpendicular to the axis
of myofibrils, whereas P values of + 1 meant a molecular orientation
along the 0° direction, i.e. the emission of the single dipole was
completely polarized in the parallel direction and the electric vector of
the exciting light was totally maintained parallel to the axis of the
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myofibril. In Fig. 6B, the framed cluster between Ch1 and Ch2 intensity
minimum of 18.429 KHz and maximum of 20.062 KHz indicated an
additional dynamic relaxation process with intercept of —0.548 in the
photon subset (Fig. 6C) corresponding to an anisotropy A= 0.578
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which differed from the measured average anisotropy of 0.111. This
curve in Fig. 6C gives more concise information about the relation
between the variable anisotropy and time than the whole set of data
itself (Figs. 6A and B). It is important to note that only the variable
anisotropy is subject to scatter, whereas time could be controlled
precisely. The quantitative measure of how closely the two variables
are related is R? and r, respectively (see 2. Materials and methods,
subsection 2.8. “Testing of association between anisotropy and time in
subset of photons showing slow dynamic relaxation behavior in
actomyosin motors”). Under the reasonable assumption that r is
distributed approximately normally, we found the association be-
tween anisotropy and time |t=—2.17|>ty—0125; v=2=1.60—Hp
rejected with a significance level of 87.5%. The problem we addressed
in live-cell approach was timescale separation in the dynamics of
single actomyosin motors, which occurred when one form of dynamics
is much slower than another. To this end, long measurement times of
at least 20 s needed to allow evolution of the slower modes. This was
especially useful if fast rigor modes are not of interest in themselves
and, therefore, were subtracted in the contraction time series. Under
experimental contraction conditions, a proper quantification was
possible by averaging over single actomyosin motor molecules.

Fig. 7 presents the average outcome of six actomyosin motor
molecules. In rigor muscle cell, the orientation of the actomyosin
motor is fixed and, therefore, we could not observe the slow dynamics
under rigor conditions. In contrast, in contraction muscle cell, the
orientation of the actomyosin motor is variable. Thus, the emission
anisotropy was observed as a function of time in the subset of photons
showing the slow dynamics A(t)=Ay e"", in which Ay is the
anisotropy at the beginning of contraction function and 7 is the
correlation time (Fig. 7A). The plot of In(A) versus t is linear and has a
slope of —0.110 per second. The strength of the association is |t=
—3.84| >ty —0.005: v=10=3.17 = Hp rejected with a significance level
of 99.5%. Thus, we found a correlation time of the slow dynamic
process in the actomyosin motors of 7=9.09 s (with Ap=0.203). The
dynamics that falls into the subset of photons depicted in Fig. 7A was
further characterized by its time-dependent fluctuation number
distribution in Fig. 7B, and its fluctuation off-time distribution in
Fig. 7C. Interestingly, the slow relaxation dynamics revealed molec-
ular memory as shown in Fig. 7C. We found that anisotropy in rigor
and contraction is different because orientation is different in rigor
and contracting muscle cell. In rigor muscle cell, the orientation is well
defined. In contracting muscle cell, the orientation is variable. Because
anisotropy is different, the polarized fluorescence intensities are
different. We did not find molecular memory in rigor time traces.

4. Discussion

The myofibrils labeled with the ratio of fluorescently labeled to
unlabeled actin-markers were chosen such that the estimated number
of labeled actins present in the observation volume at a given time
was equal or smaller than unity. The aim of this work was to study
dynamic behavior of single actomyosin interaction complexes during
contraction in live cells. This was accomplished through measure-
ments of fluorescence polarization of actin labeled with rhodamine-

Fig. 7. Time-dependent polarized fluorescence intensity fluctuations above the
biological rigor background noise in six actomyosin motor molecules under
experimental contraction conditions. (A) Subset of photons showing the slow dynamic
relaxation behavior of the emission anisotropy in actomyosin motors: minimum
intensity (Ch1+ Ch2)=15.082 KHz, maximum intensity (Ch1+ Ch2)=281.170 KHz,
average polarization 0.180, average anisotropy 0.130. (B) Fluctuation number
distribution of the subset photons in (A). (C) The logarithmic probability density of
off-times is plotted against the off-times. The off-times between the random
fluctuations do not yield a negative exponential distribution that would give a line
with a negative slope in the logarithmic probability density versus off-time plot. We
measured a different behavior as depicted. Thus, the fluctuations in the photon subset
of (A) occurred at random with molecular memory. For details see text.
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phalloidin. The focus of previous experimental studies of actomyosin
at the single-molecule level was mainly the cross-bridge attachment
(power stroke) and detachment events of myosin to actin [9-14]. It is
for this reason that in the present study we recorded dynamic
processes in live skeletal cells by means of polarized fluorescence
intensity time series. The fluorescence intensity fluctuations were
detected through polarizers oriented vertically, i.e. parallel to the axis
of muscle, and horizontally, i.e. perpendicular to the axis of muscle, by
the two-channel optical system (Fig. 2). The time series were defined
by the start time and the time resolution of the measurements (Fig. 3).
The latter was 10 ms throughout this study.

First, the measured data of Figs. 4-6 are presented initially as
binned frequency histograms which enable a qualitative inspection in
panel A. The shapes of the histograms Figs. 4-6A are different. Only
the data of Fig. 4 are distributed practically ‘symmetrically’ but the
data of Figs. 5 and 6A are somewhat ‘skewed’. Certainly, skewness
does not mean that the data lack sufficient accuracy and precision. It
simply indicates the presence of additional modes (local maxima) in
the data. We applied central moments characterizing the polarized
fluorescence intensity signal in the two detection channels. Our
finding that the contraction data showed intensity signals in two
polarization-sensitive detection channels with the two mean maxima
above the rigor fluctuations has major implications. From the
observed asymmetry in the distribution function, we infer the
presence of additional dynamic modes in the orientational motion
of actin filaments under contraction conditions. The fact that
contraction above rigor modes can be described by two Gaussian
and rigor cannot is significant because it suggests that the two
Gaussians represent pre- and post-power stroke conformations.

Second, the acquisition of photon distribution above biological
rigor noise via our threshold algorithm became necessary because of
the overlapping signals in time. For this reason the so-called
correlation plot (Fig. 6B) of measured polarization versus total
polarized fluorescence intensities (rigor background corrected)
defined the region of interest, which corresponded to the second
Gaussian photon distributions.

We think that a relaxation process shown in Fig. 7 represents slow
decay of oscillations of a whole actin filament. Now, let us assume that
the probability of being not active, i.e. not moving, is independent of
how much time has previously passed. Therefore, the probability of
non-active within an observation time interval, which we call time
between two successive fluctuations AT measured in the polarized
fluorescence time series, is linearly proportional to that time interval.
Hence, we got

Prob{TE(t,t + AT)} = o AT, (1)

where a= const here is a multiplier (proportionality factor). Because
the fluctuations are random, it is possible that the actomyosin
molecule spends a little bit longer in its non-active, non-moving
states. For the single actomyosin molecule to still be non-active at
time t+ AT, it has to be non-active at time t and during the time AT of
its contraction fluctuations. The joint probability of both independent
events was

S(t 4+ AT) = S(t)-(1—a-AT). ()
S stands for still non-active. We can immediately write

S(t + AT)=S(t)

We took the limit AT— 0 and obtained

as

3 = s, 4)

Hence,
S(t) =e ™" (5)

Now, the theoretical probability density function of times between
fluctuations par(t) was given by

par() = — 5. ©)

From Eq. (6), we got
par(t) = ae” ™ )

The probability density function of times between fluctuations in the
measured time series has units of time™" (see also Fig. 7C). AT denotes
the variate that occurs without molecular memory. Eq. (7) means that
the intervals of time between the random happenings without
molecular memory have a negative exponential distribution. In
other words, it is much more likely to have short off-times AT in the
measured fluorescence time series than long ones. « can have any
value between 0 and infinity. The negative exponential distribution
(7) is a reverse J-shaped distribution and the greater o the more
sharply the distribution curve par(t) slopes for AT=0. It has the
following properties of the mean p and the variance 0® =12

(8)

so that the standard deviation equals 1/oc = the mean. To test whether the
random process under study had no memory, i.e. o a(t), we compared
the exponential decay of Eq. (7) with the measured probability densities
par(t) of times between successive fluctuations obtained from the
measured polarized fluctuation time traces. By plotting In par(t) versus
AT in Fig. 7C, the off-times trajectories of fluctuations revealed a
significant difference in behavior from Eq. (7), which cannot be caused
by the negative exponential distribution of off-times (7). It is a fair
deduction, then, that the subset of fluctuations in Fig. 7A do not strictly
occur at random. We found a merely alternative way of the off-time
distribution that is a memory effect, in which an individual actomyosin
molecule repeats similar behavior suggesting that structural features are
somehow remembered during contraction functions.

In summary, in Fig. 7C, we found a new measure of contraction
fluctuations above random background orientation in the rigor
fluorescence time series. We were able to sort out molecular noise
and drifts (e.g. photobleaching) from contraction fluctuations. We call
this measure ‘molecular memory’. The comparison of the fluorescence
signal obtained from corresponding rigor data revealed that molec-
ular memory was not present in rigor data.

5. Conclusions

The presented methodology represents a significant application of
a novel single-molecule fluctuation approach to an important
biological problem. Rhodamine-labeled phalloidin was mixed with
unlabelled phalloidin at a ratio of ~1:100,000 and added to myofibrils
irreversibly shortened with contracting solution and cross-linked
with EDC. Single-molecule detection was used to study the time-
dependence of molecular orientation of the actomyosin motor
molecules under rigor and contraction conditions. In this way the
cross-bridge attachment (power stroke) and detachment events of
myosin to actin was followed. Specifically, the emitted fluorescence
was collected using two channels to view simultaneously the parallel
or perpendicular component. The collected fluorescence photon
stream data were analyzed by a novel analysis procedure, termed
the Fluctuation Analyzer TZ. We searched for the peak-like character-
istics in the data, where photon counts increased and then decreased.
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If the photon counts at the local maximum were above a certain
threshold level, the software considered it as a fluctuation and saved
the time position and photon counts of the local maximum. The
Fluctuation Analyzer also saves the time position of the start and the
end of each peak shape. The contraction data obtained was explained
by two Gaussian photon distributions of on-average orientations that
represented the mean maxima pre- and post-power stroke con-
formations. The clusters of polarized photons indicated an anisotropy
decay of single actomyosin motors of ~9 s during muscle contraction.
Thus, the ability to interact using different orientations of the reporter
dipole on actin was an important feature of the single actomyosin
molecules in skeletal muscle myofibrils.
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