非对称传感器
Overview of MetaOx
作为一款独特的耗氧量监测仪器,MetaOx能够通过频域近红外光谱 (FDNIRS) 获取血红蛋白浓度及氧合的量化测定结果,并且用扩散相关光谱 (DCS) 获得血流指数。有了这些参数和动脉血氧浓度的信息 (用脉冲血氧仪获取) ,仪器可以得出大脑氧气代谢(CMRO2) 指数
MetaOx技术的发展是由美国国立卫生研究院 (NIH) 下尤妮斯·肯尼迪·施莱佛国家儿童健康与人类发育研究所的小企业创新研究计划 (SBIR) 补助金资助的,仪器是在与Maria Angela Franceschini教授 (麻省总医院的马蒂诺生物医学影像中心) 和Arjun Yodh教授 (宾夕法尼亚大学) 的合作下开发的。
警告:这是研究性器械,被联邦 (或美国) 法律限制为用于研究。ISS MetaOx目前只能被用于科研。
MetaOx的关键特征
监测新陈代谢率的改变
上至50 Hz的快速测量
同时测量 (FDNIRS和DCS)
How MetaOx Works
MetaOx分别结合了三种技术:
从这些测量中,MetaOx可以得出脑耗氧代谢率(CMRO2)。
- 定量的频域近红外光谱 (FDNIRS),用于提供组织中的氧合与脱氧血红蛋白浓度
- 脉搏血氧仪,用于测量动脉血氧饱和度
- 扩散相关光谱 (DCS),用于测量血流
MetaOx的应用
在婴儿中:
- 评估微血管脑血流量 (CBF)
- 脑氧代谢率 (CMRO2) 的发展
- 血流和CMRO2的功能性改变
在婴儿和儿童 (患有先天性心脏缺陷) 经历过心脏手术后:
- 评估术前血流动力学
- 监测早期手术后新陈代谢
- 监测脑氧代谢
- 评估脑血管反应性
- 对于碳酸氢钠质量的响应
在成年人中:
- 测量缺血性中风患者的脑血管反应性受损
- 估计创伤性大脑损伤和蛛网膜下腔出血病人的自动调节和CBF反应
- 评估健康成年人和患有颈动脉狭窄和/或闭塞病人对于药物引导血管舒张做出的脑血管反应
- 对颈内动脉狭窄闭塞性病变患者进行风险评估
- 监测进行颈动脉内膜切除的成年患者
- 评估承认对于低频重复TMS应用的血流动力学反应
- 研究CBF反应随着年龄的变化
Product Specifications for MetaOx
激光
- NIRS: 660, 690, 705, 730, 760, 785, 810, 830 nm; 5 - 9 mW
- DCS: 850 nm,长相干长度;50 mW
探测器
- NIRS: 数量4个PMT和GaAs;电脑控制增益
- DCS: 数量8个APD;光子计数模式
采集电子元器件
- NIRS: 4通道A/D转换器
- DCS:4通道,8通道数字相关器
传感器
- 所有光纤
电脑和运行系统
- 触屏显示器,Windows 11, 64比特
电源要求
- 通用电源输入:110 - 240 V, 250 W
大小 (cm)
- 45 x 24 x 44
重量 (kg)
- 19
MetaOx的产品配件
产品资源
-
“Time to surgery and preoperative cerebral hemodynamics predict postoperative white matter injury in neonates with hypoplastic left heart syndrome.” Lynch, J.M., Buckley, E.M., Schwab, P.J., Mccarthy, A.L., Winters, M.E., Busch, D.R., Xiao, R., Goff, D.A., Nicolson, S.C., Montenegro, L.M., Fuller, S., Gaynor, J.W., Spray, T.L., Yodh, A.G., Naim, M.Y. & Licht, D.J. The Journal of Thoracic and Cardiovascular Surgery, 148(5), pp. 2181–2188, 2014, Nov. doi: 10.1016/j.jtcvs.2014.05.081.
-
“Cerebral Oxygen Metabolism in Neonates with Congenital Heart Disease Quantified by MRI and Optics.” Jain, V., Buckley, E.M., Licht, D.J., Lynch, J.M., Schwab, P.J., Naim, M.Y., Lavin, N.A., Nicolson, S.C., Montenegro, L.M., Yodh, A.G. & Wehrli, F.W. Journal of Cerebral Blood Flow & Metabolism, 34(3), pp. 380–388, 2013, Dec. doi: 10.1038/jcbfm.2013.214.
-
“Continuous cerebral hemodynamic measurement during deep hypothermic circulatory arrest.” Busch, D.R., Rusin, C.G., Miller-Hance, W., Kibler, K., Baker, W.B., Heinle, J.S., Fraser, C.D., Yodh, A.G., Licht, D.J. & Brady, K.M. Biomedical Optics Express, 7(9), p. 3461, 2016, Aug. doi: 10.1364/boe.7.003461.
-
“Cerebral Blood Flow Response to Hypercapnia in Children with Obstructive Sleep Apnea Syndrome.” Busch, D.R., Lynch, J.M., Winters, M.E., Mccarthy, A.L., Newland, J.J., Ko, T., Cornaglia, M.A., Radcliffe, J., Mcdonough, J.M., Samuel, J., Matthews, E., Xiao, R., Yodh, A.G., Marcus, C.L., Licht, D.J. & Tapia, I.E. Sleep, 39(1), pp. 209–216, 2016, Jan. doi: 10.5665/sleep.5350.
-
“Noninvasive Optical Quantification of Cerebral Venous Oxygen Saturation in Humans.” Lynch, J.M., Buckley, E.M., Schwab, P.J., Busch, D.R., Hanna, B.D., Putt, M.E., Licht, D.J. & Yodh, A.G. Academic Radiology, 21(2), pp. 162–167, 2014, Feb. doi: 10.1016/j.acra.2013.10.013.
-
“Non-invasive Optical Measurement of Cerebral Metabolism and Hemodynamics in Infants.” Lin, P.-Y., Roche-Labarbe, N., Dehaes, M., Carp, S., Fenoglio, A., Barbieri, B., Hagan, K., Grant, P.E. & Franceschini, M.A. Journal of Visualized Experiments, 34(73), pp. 380–388, 2013, Mar. doi: 10.3791/4379.
-
“Regional and Hemispheric Asymmetries of Cerebral Hemodynamic and Oxygen Metabolism in Newborns.” Lin, P.-Y., Roche-Labarbe, N., Dehaes, M., Fenoglio, A., Grant, P.E. & Franceschini, M.A. Cerebral Cortex, 23(2), pp. 339–348, 2012, Feb. doi: 10.1093/cercor/bhs023.
-
“Near-Infrared Spectroscopy Assessment of Cerebral Oxygen Metabolism in the Developing Premature Brain.” Roche-Labarbe, N., Fenoglio, A., Aggarwal, A., Dehaes, M., Carp, S.A., Franceschini, M.A. & Grant, P.E. Journal of Cerebral Blood Flow & Metabolism, 32(3), pp. 481–488, 2011, Oct. doi: 10.1038/jcbfm.2011.145.
-
“Influences of tissue absorption and scattering on diffuse correlation spectroscopy blood flow measurements.” Irwin, D., Dong, L., Shang, Y., Cheng, R., Kudrimoti, M., Stevens, S.D. & Yu, G. Biomedical Optics Express, 2(7), p. 1969, 2011, Jun. doi: 10.1364/boe.2.001969.
-
“Optical measurement of cerebral hemodynamics and oxygen metabolism in neonates with congenital heart defects.” Durduran, T., Zhou, C., Buckley, E.M., Kim, M.N., Yu, G., Choe, R., Gaynor, J.W., Spray, T.L., Durning, S.M., Mason, S.E., Montenegro, L.M., Nicolson, S.C., Zimmerman, R.A., Putt, M.E., Wang, J., Greenberg, J.H., Detre, J.A., Yodh, A.G. & Licht, D.J. Journal of Biomedical Optics, 15(3), p. 037004, 2010, Oct. doi: 10.1117/1.3425884.
-
“Increased Cerebral Blood Volume and Oxygen Consumption in Neonatal Brain Injury.” Grant, P.E., Roche-Labarbe, N., Surova, A., Themelis, G., Selb, J., Warren, E.K., Krishnamoorthy, K.S., Boas, D.A. & Franceschini, M.A. Journal of Cerebral Blood Flow & Metabolism, 29(10), pp. 1704–1713, 2009, Jul. doi: 10.1038/jcbfm.2009.90.
-
“Noninvasive optical measures of CBV, StO2, CBF index, and rCMRO2 in human premature neonates' brains in the first six weeks of life.” Roche-Labarbe, N., Carp, S.A., Surova, A., Patel, M., Boas, D.A., Grant, P.E. & Franceschini, M.A. Human Brain Mapping, 31(3), pp. 341–352, 2009, Jul. doi: 10.1002/hbm.20868.
-
“Assessment of Infant Brain Development With Frequency-Domain Near-Infrared Spectroscopy.” Franceschini, M.A., Thaker, S., Themelis, G., Krishnamoorthy, K.K., Bortfeld, H., Diamond, S.G., Boas, D.A., Arvin, K. & Grant, P.E. Pediatric Research, 61(5, Part 1), pp. 546–551, 2007, May. doi: 10.1203/pdr.0b013e318045be99.
-
“Developmental Changes of Optical Properties in Neonates Determined by Near-Infrared Time-Resolved Spectroscopy.” Ijichi, S., Kusaka, T., Isobe, K., Okubo, K., Kawada, K., Namba, M., Okada, H., Nishida, T., Imai, T. & Itoh, S. Pediatric Research, 58(3), pp. 568–573, 2005, Sep. doi: 10.1203/01.pdr.0000175638.98041.0e.
-
“In vivo cerebrovascular measurement combining diffuse near-infrared absorption and correlation spectroscopies.” Cheung, C., Culver, J.P., Takahashi, K., Greenberg, J.H. & Yodh, A.G. Physics in Medicine and Biology, 46(8), pp. 2053–2065, 2001, Jul. doi: 10.1088/0031-9155/46/8/302.
-
“The influence of voxelotor on cerebral blood flow and oxygen extraction in pediatric sickle cell disease.” Brothers, R.O., Turrentine, K.B., Akbar, M., Triplett, S., Zhao, H., Urner, T.M., Goldman-Yassen, A., Jones, R.A., Knight-Scott, J., Milla, S.S., Bai, S., Tang, A., Brown, R.C., Buckley, E.M. Blood, 143(21), p. 2145–2151, 2024, May.
-
“DCS blood flow index underestimates skeletal muscle perfusion in vivo: rationale and early evidence for the NIRS-DCS perfusion index.” Bartlett, M.F., Oneglia, A.P., Ricard, M.D., Siddiqui, A., Englund, E.K., Buckley, E.M., Hueber, D.M., Nelson, M.D. Journal of Biomedical Optics, 29(02), 2024, Feb.
-
“3T 31P/1H calf muscle coil for 1H and 31P MRI/MRS integrated with NIRS data acquisition.” Zhang, B., Lowrance, D., Sarma, M.K., Bartlett, M., Zaha, D., Nelson, M.D. & Henning, A. Magnetic Resonance in Medicine, 91(6), p. 2638–2651, 2024, Jan. doi: 10.1002/mrm.30025.
-
“Non-invasive diffuse optical monitoring of cerebral physiology in an adult swine-model of impact traumatic brain injury.” Forti, R.M., Hobson, L.J., Benson, E.J., Ko, T.S., Ranieri, N.R., Laurent, G., Weeks, M.K., Widmann, N.J., Morton, S., Davis, A.M., Sueishi, T., Lin, Y., Wulwick, K.S., Fagan, N., Shin, S.S., Kao, S.-H., Licht, D.J., White, B.R., Kilbaugh, T.J., Yodh, A.G. & Baker, W.B. Biomedical Optics Express, 14(6), p. 2432, 2023, May. doi: 10.1364/boe.486363.
-
“Two-layer analytical model for estimation of layer thickness and flow using Diffuse Correlation Spectroscopy.” Wu, J., Tabassum, S., Brown, W.L., Wood, S., Yang, J., and Kainerstorfer, J.M. PLOS ONE, 17(9), p. e0274258, 2022, Sep.
-
“Improving Infant Hydrocephalus Outcomes in Uganda: A Longitudinal Prospective Study Protocol for Predicting Developmental Outcomes and Identifying Patients at Risk for Early Treatment Failure after ETV/CPC.” Vadset, T.A., Rajaram, A., Hsiao, C.-H., Katungi, M.K., Magombe, J., Seruwu, M., Nsubuga, B.K., Vyas, R., Tatz, J., Playter, K., Nalule, E., Natukwatsa, D., Wabukoma, M., Perez, L.E.N., Mulondo, R., Queally, J.T., Fenster, A., Kulkarni, A.V., Schiff, S.J., Grant, P.E., Kabachelor, E.M., Warf, B.C., Sutin, J.D.B. & Lin, P.-Y. Metabolites, 12(1), p. 78, 2022, Jan. doi: 10.3390/metabo12010078.
-
“Impact of changes in tissue optical properties on near-infrared diffuse correlation spectroscopy measures of skeletal muscle blood flow.” Bartlett, M.F., Jordan, S.M., Hueber, D.M. & Nelson, M.D. Journal of Applied Physiology, 130(4), pp. 1183–1195, 2021, Apr. doi: 10.1152/japplphysiol.00857.2020.
-
“Diffuse correlation spectroscopy and frequency-domain near-infrared spectroscopy for measuring microvascular blood flow in dynamically exercising human muscles.” Quaresima, V., Farzam, P., Anderson, P., Farzam, P.Y., Wiese, D., Carp, S.A., Ferrari, M. & Franceschini, M.A. Journal of Applied Physiology, 127(5), p. 1328–1337, 2019, Nov. doi: 10.1152/japplphysiol.00324.2019.
-
“Fluctuations in intracranial pressure can be estimated non-invasively using near-infrared spectroscopy in non-human primates.” Ruesch, A., Schmitt, S., Yang, J., Smith, M.A., Kainerstorfer, J.M. Journal of Cerebral Blood Flow & Metabolism, 40(11), p. 2304–2314, 2019, Nov.
-
“Studies into the determinants of skeletal muscle oxygen consumption: novel insight from near-infrared diffuse correlation spectroscopy.” Tucker, W.J., Rosenberry, R., Trojacek, D., Chamseddine, H.H., Arena-Marshall, C.A., Zhu, Y., Wang, J., Kellawan, J.M., Haykowsky, M.J., Tian, F. & Nelson, M.D. The Journal of Physiology, 597(11), pp. 2887–2901, 2019, Apr. doi: 10.1113/jp277580.
-
“The noninvasive simultaneous measurement of tissue oxygenation and microvascular hemodynamics during incremental handgrip exercise.” Hammer, S.M., Alexander, A.M., Didier, K.D., Smith, J.R., Caldwell, J.T., Sutterfield, S.L., Ade, C.J. & Barstow, T.J. Journal of Applied Physiology, 124(3), pp. 604–614, 2018, Mar. doi: 10.1152/japplphysiol.00815.2017.
-
“Diffuse correlation spectroscopy for measurement of cerebral blood flow: future prospects.” Buckley, E.M., Parthasarathy, A.B., Grant, P.E., Yodh, A.G. & Franceschini, M.A. Neurophotonics, 1(1), p. 011009, 2014, Jun. doi: 10.1117/1.nph.1.1.011009.
-
“Direct measurement of tissue blood flow and metabolism with diffuse optics.” Mesquita, R.C., Durduran, T., Yu, G., Buckley, E.M., Kim, M.N., Zhou, C., Choe, R., Sunar, U. & Yodh, A.G. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369(1955), pp. 4390–4406, 2011, Nov. doi: 10.1098/rsta.2011.0232.
-
“Influences of tissue absorption and scattering on diffuse correlation spectroscopy blood flow measurements.” Irwin, D., Dong, L., Shang, Y., Cheng, R., Kudrimoti, M., Stevens, S.D. & Yu, G. Biomedical Optics Express, 2(7), p. 1969, 2011, Jun. doi: 10.1364/boe.2.001969.
-
“Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation.” Boas, D.A. & Yodh, A.G. Journal of the Optical Society of America A, 14(1), p. 192, 1997, Jan. doi: 10.1364/josaa.14.000192.
-
“Scattering and Imaging with Diffusing Temporal Field Correlations.” Boas, D.A., Campbell, L.E. & Yodh, A.G. Physical Review Letters, 75(9), pp. 1855–1858, 1995, Aug. doi: 10.1103/physrevlett.75.1855.
-
“Combined multi-distance frequency domain and diffuse correlation spectroscopy system with simultaneous data acquisition and real-time analysis.” Carp, S.A., Farzam, P., Redes, N., Hueber, D.M. & Franceschini, M.A. Biomedical Optics Express, 8(9), p. 3993, 2017, Aug. doi: 10.1364/boe.8.003993.
-
“Validation of diffuse correlation spectroscopic measurement of cerebral blood flow using phase-encoded velocity mapping magnetic resonance imaging.” Buckley, E.M., Hance, D., Pawlowski, T., Lynch, J., Wilson, F.B., Mesquita, R.C., Durduran, T., Diaz, L.K., Putt, M.E., Licht, D.J., Fogel, M.A. & Yodh, A.G. Journal of Biomedical Optics, 17(3), p. 037007, 2012, Jul. doi: 10.1117/1.jbo.17.3.037007.
-
“Validation of diffuse correlation spectroscopy measurements of rodent cerebral blood flow with simultaneous arterial spin labeling MRI; towards MRI-optical continuous cerebral metabolic monitoring.” Carp, S.A., Dai, G.P., Boas, D.A., Franceschini, M.A. & Kim, Y.R. Biomedical Optics Express, 1(2), p. 553, 2010, Aug. doi: 10.1364/boe.1.000553.