单比色皿样本室
Overview of ChronosBH
ChronosBH是一款时域 (TCSCP) 紧凑型光谱仪,用于在皮秒至秒这样较宽的时间尺度下进行衰减时测量。该仪器的设计采用T式样几何图形,用于在两个发射通道上同时采集。各种脉冲光源都可以与ChronosBH连接,其中包括激光二极管、超连续激光器和多光子激光器。探测器可从快速PMT、混合型PMT和砷化镓 (GaAs) PMT中选择。该仪器可以被升级,升级后能使用氙弧灯进行稳态荧光测量。
ChronosBH的操作是全自动的;仪器控制、数据采集及处理是通过多维光谱学软件Vinci完成的。
ChronosBH的关键特征
时域测量
最大的灵敏度
全自动的
与外部设备集成
可升级的
- 拥有灵活的仪器构造和各种光源
- 占地面积紧凑,为了在两个通道上同时测量而设计了T式样几何形状
- 下至皮秒上至秒的寿命测量
- 全自动化的仪器部件包括了:比色皿支架、偏振板、滤光轮、单色器和搅拌器
- 由PC操控将恒温浴、滴定仪、停流仪器和压力泵集成
- 可升级使其包括稳态测定
- 用于快速且精确偏振测定的平行光束光学设计
通过频域实现的数据采集的关键特征
- 更直接测量寿命的方法
- 无需参照,但是需要测量仪器响应函数 (IRF)
- 测量各向异性需要在每个偏振平面进行两个单独的测量
Product Specifications for ChronosBH
光源
- 激光二极管 (nm): 370, 405, 436, 473, 635, 690, 780, 830
- LED (nm): 280, 300, 335, 345, 460, 500, 520
- 脉冲激光器:超连续谱、钛蓝宝石、脉冲激光二极管
聚焦和收集几何排列
- 平行光束设计,用于精准偏振测量
偏振器
- UV级别格兰-汤普逊偏振器,L/A = 2.0
探测器
- PMT
- 混合型PMT, APD
探测模块
- 快速模拟和光子计数电子元件
波长范围
- 185 - 1,700 (取决于探测器)
TCSPC模块
- 最小时间窗口宽度 (ps): 1
- 时间分辨率,RMS抖动 (ps): 34
- 总共计数率:8.5 MHz
寿命测量范围
- 10-11 s至102 s
操作系统
- Windows 11
电源要求
- 110 - 240 V, 50/60 Hz, 400 VAC
大小
- 540 mm (长) x 425 mm (宽) x 235 mm (高)
重量 (kg)
- 25
ChronosBH的配置示例
ChronosBH的产品配件
产品资源
-
“Clinically Divergent Mutation Effects on the Structure and Function of the Human Cardiac Tropomyosin Overlap.” Mcconnell, M., Grinspan, L.T., Williams, M.R., Lynn, M.L., Schwartz, B.A., Fass, O.Z., Schwartz, S.D. & Tardiff, J.C. Biochemistry, 56(26), pp. 3403–3413, 2017, Jun. doi: 10.1021/acs.biochem.7b00266.
-
“Interaction of Hydralazine with Human Serum Albumin and Effect of Β-Cyclodextrin on Binding: Insights from Spectroscopic and Molecular Docking Techniques.” Bolattin, M.B., Nandibewoor, S.T., Joshi, S.D., Dixit, S.R. & Chimatadar, S.A. Industrial Engineering Chemistry Research, 55(19), pp. 5454–5464, 2016, May. doi: 10.1021/acs.iecr.6b00517.
-
“Without Binding ATP, Human Rad51 Does Not Form Helical Filaments on ssDNA.” Schay, G., Borka, B., Kernya, L., Bulyáki, É., Kardos, J., Fekete, M. & Fidy, J. The Journal of Physical Chemistry B, 120(9), pp. 2165–2178, 2016, Mar. doi: 10.1021/acs.jpcb.5b12220.
-
“Hydroxymethylation of DNA influences nucleosomal conformation and stability in vitro.” Mendonca, A., Chang, E.H., Liu, W. & Yuan, C. Biochimica et Biophysica Acta - Gene Regulatory Mechanisms, 1839(11), pp. 1323–1329, 2014, Nov. doi: 10.1016/j.bbagrm.2014.09.014.
-
“Solution Scattering and FRET Studies on Nucleosomes Reveal DNA Unwrapping Effects of H3 and H4 Tail Removal.” Andresen, K., Jimenez-Useche, I., Howell, S.C., Yuan, C. & Qiu, X. PLoS ONE, 8(11), p. e78587, 2013, Nov. doi: 10.1371/journal.pone.0078587.
-
“DNA Methylation Regulated Nucleosome Dynamics.” Jimenez-Useche, I., Ke, J., Tian, Y., Shim, D., Howell, S.C., Qiu, X. & Yuan, C. Scientific Reports, 3(1), p. e78587, 2013, Jul. doi: 10.1038/srep02121.
-
“The Effect of DNA CpG Methylation on the Dynamic Conformation of a Nucleosome.” Jimenez-Useche, I. & Yuan, C. Biophysical Journal, 103(12), pp. 2502–2512, 2012, Dec. doi: 10.1016/j.bpj.2012.11.012.
-
“Conformational Dynamics of Titin PEVK Explored with FRET Spectroscopy.” Huber, T., Grama, L., Hetényi, C., Schay, G., Fülöp, L., Penke, B. & Kellermayer, M. Biophysical Journal, 103(7), pp. 1480–1489, 2012, Oct. doi: 10.1016/j.bpj.2012.08.042.
-
“Clipping of Flexible Tails of Histones H3 and H4 Affects the Structure and Dynamics of the Nucleosome.” Nurse, N.P., Jimenez-Useche, I., Smith, I.T. & Yuan, C. Biophysical Journal, 104(5), pp. 1081–1088, 2013, Mar. doi: 10.1016/j.bpj.2013.01.019.
-
“Photophysical and Electrochemical Characterization of BODIPY-Containing Dyads Comparing the Influence of an A–D–A versus D–A Motif on Excited-State Photophysics.” Hendel, S.J., Poe, A.M., Khomein, P., Bae, Y., Thayumanavan, S. & Young, E.R. The Journal of Physical Chemistry A, 120(44), pp. 8794–8803, 2016, Nov. doi: 10.1021/acs.jpca.6b06590.
-
“Photophysical characterization of [Ir(ppy)2(dmb)][PF6] towards application in light-emitting electrochemical cells (LECs).” Zanoni, K.P.S., Sanematsu, M.S. & Iha, N.Y.M. Inorganic Chemistry Communications, 43(44), pp. 162–164, 2014, May. doi: 10.1016/j.inoche.2014.02.010.
-
“Solid State Molecular Device Based on a Rhenium(I) Polypyridyl Complex Immobilized on TiO2 Films.” Patrocinio, A.O.T., Frin, K.P.M. & Iha, N.Y.M. Inorganic Chemistry, 52(10), pp. 5889–5896, 2013, May. doi: 10.1021/ic3028572.
-
“A Pyrene Maleimide with a Flexible Linker for Sampling of Longer Inter-Thiol Distances by Excimer Formation.” Niwayama, S., Kassar, A.S., Zhao, T., Sutton, R.B. & Altenberg, G.A. PLoS ONE, 6(10), p. e26691, 2011, Oct. doi: 10.1371/journal.pone.0026691.
-
“Chlorin-Based Nanoscale Metal–Organic Framework Systemically Rejects Colorectal Cancers via Synergistic Photodynamic Therapy and Checkpoint Blockade Immunotherapy.” Lu, K., He, C., Guo, N., Chan, C., Ni, K., Weichselbaum, R.R. & Lin, W. Journal of the American Chemical Society, 138(38), pp. 12502–12510, 2016, Sep. doi: 10.1021/jacs.6b06663.
-
“A Chlorin-Based Nanoscale Metal–Organic Framework for Photodynamic Therapy of Colon Cancers.” Lu, K., He, C. & Lin, W. Journal of the American Chemical Society, 137(24), pp. 7600–7603, 2015, Jun. doi: 10.1021/jacs.5b04069.
-
“Auto-fluorescence lifetime and light reflectance spectroscopy for breast cancer diagnosis: potential tools for intraoperative margin detection.” Sharma, V., Shivalingaiah, S., Peng, Y., Euhus, D., Gryczynski, Z. & Liu, H. Biomedical Optics Express, 3(8), p. 1825, 2012, Jul. doi: 10.1364/boe.3.001825.
-
“A DUAL-MODALITY OPTICAL BIOPSY APPROACH FOR IN VIVO DETECTION OF PROSTATE CANCER IN RAT MODEL.” Sharma, V., Patel, N., Shen, J., Tang, L., Alexandrakis, G. & Liu, H. Journal of Innovative Optical Health Sciences, 04(03), pp. 269–277, 2011, Jul. doi: 10.1142/s179354581100154x.
-
“Efficient and thermally stable inverted perovskite solar cells by introduction of non-fullerene electron transporting materials.” Heo, J.H., Lee, S.-C., Jung, S.-K., Kwon, O.-P. & Im, S.H. J. Mater. Chem. A, 5(39), p. 20615–20622, 2017. doi: 10.1039/c7ta06900f.
-
“Scalable Ligand-Mediated Transport Synthesis of Organic–Inorganic Hybrid Perovskite Nanocrystals with Resolved Electronic Structure and Ultrafast Dynamics.” Wang, L., Williams, N.E., Malachosky, E.W., Otto, J.P., Hayes, D., Wood, R.E., Guyot-Sionnest, P. & Engel, G.S. ACS Nano, 11(3), pp. 2689–2696, 2017, Feb. doi: 10.1021/acsnano.6b07574.
-
“Exploring an Emissive Charge Transfer Process in Zero-Twist Donor–Acceptor Molecular Design as a Dual-State Emitter.” Kumar, S., Singh, P., Kumar, P., Srivastava, R., Pal, S.K. & Ghosh, S. The Journal of Physical Chemistry C, 120(23), pp. 12723–12733, 2016, Jun. doi: 10.1021/acs.jpcc.6b01351.