Overview of Q2
这是一款紧凑且有适配性的显微镜系统,用于全面的时间解析共轭成像和荧光波动光谱 (FFS) 测定。Q2能够被配有单光子与多光子激发,以及上至5个探测通道,以此迎接单分子灵敏度所带来的挑战并对活细胞成像和材料科学应用进行所需的快速数据读取。
探测器被安装在牢固且与Q2连接的底盘支架上,非常方便。为了分开射入各个探测器的波长范围,彩色滤光片立方体被放置在通道的连接处,每一个探测器前的滤光片都会筛选出相应的光谱波长范围。立方体还容纳了偏振分光镜,用于获得偏振。
该产品有适用于2、3、4个探测器的支架单元。每一个支架上的探测器种类可以是不一样的。例如说,一个4探测器支架元件可以承载2个SPAD和2个混合型PMT。纤维端可以替代探测器连接硬件,用于连接至摄谱仪。
Q2的关键特征
模块化
激光波长、探测器、探测通道数量和显微镜的选择。
寿命测量
从100 ps 到100 ms
实惠的解决方案
优秀的共焦图像
由Mito-Tracker Red CMXRos和Alexa Fluor 488鬼笔环肽染色的牛肺动脉内皮 (BPAE) 细胞
寿命成像和强度
铃兰;强度图像 (第一张) 和寿命图像 (最后一张)。图像大小为1024 x 1024像素 (200 µm x 200 µm)。显微镜是奥林巴斯的IX-73型号,60X,NA=1.35物镜。激发波长为488 nm,发射是在CH1上通过一个600/37 nm滤波器、CH2上通过一个525/50 nm滤波器收集的。
利用相量图解混活细胞中来自自发荧光的信号
吖啶丙氨酸 (ACD) 是一种荧光氨基酸,其光谱和内源性自发荧光分子NADH大量重叠,这使得活细胞内ACD的图像可能被细胞NADH信号所污染。ACD的寿命 (约15ns) 与NADH的寿命 (< 5ns) 非常不同,所以时间分辨 (TR) 解混过程对于分别生成ACD和NADH的图像相当有帮助。
单分子研究:全尺寸FCS的探测
全时间尺寸FCS能让用户探究从皮秒到秒的单分子光物理动力学。FCS测定的自相关函数提供了分子的平移扩散以及其化学或光物理效应,这些效应发生的时间尺度通常超过1秒。通过将自相关函数扩展到皮秒时间尺度能获得有关单分子或纳米颗粒的附加信息:旋转扩散时间、反聚束。图中的数据是在罗丹明110水溶液上收集的,连续波在488 nm处激发。
Product Specifications for Q2
显微镜与耦合
- Evident (奥林巴斯),尼康,Zeiss和Leica
- 倒置和正置
- 左侧端口和后部端口
1p激发
- ISS激光发射器 (3、4、6激光器的模型),可提供从375 nm到1,000 nm的波长;脉冲交错激励 (PIE)
- 超连续光谱激光器,波长从400 nm至950 nm
2p激发
- 超快飞秒脉冲钛蓝宝石激光器
- 超快飞秒脉冲纤维激光器
振镜扫描仪
- 2个镀银的扫描振镜
- 清晰的光学表面:3 mm or 5 mm
- 最大扫描率:5 KHz for 3 mm和1 KHz for 5 mm
- 扫描分辨率:64 x 64 to 4096 x 4096像素
- 扫描模式:Pt, Xt, XZ, XY, XZt, XYt, XYZ
- ROI扫描:长方形、椭圆、多边形、线
位置控制**
- ISS 3轴控制单元
- ISS XY振镜扫描控制单元
- ISS Z压电控制单元
- 显微镜内置焦距控制模块
- 自动XY滑台 (ASI, Prior)
- XYZ压电台 (MadCity, PI)
针孔
- 单个,孔径可变的针孔;直径范围:从20 µm到1,000 µm
探测器
- 冷却的GaAsP和GaAs PMT
- 冷却的混合型PMTs
- SPADs
数据采集单元
- FastFLIM (数字频域FLIM)
- SWISS TCSPC卡 (时域FLIM)
软件
- VistaVision
电脑和显示屏
- 高性能处理器,32 GB RAM
- 32" 显示屏,2556 x 1440分辨率
操作系统
- Windows 11,64比特
电源要求
- 通用电源输入:110 - 240 V, 50/60 Hz, 400 VAC
大小 (mm)
- 420 (长) x 330 (宽) x 150 (高)
重量 (kg)
- 13.5 (除探测器)
备注
- *Q2通过ISS激光发射器被彻底评估并验证
- **VistaVision提供用于光谱模式测量的实用程序 (位于单点)、光栅或轨道扫描模式 (2D XY)、光学切片模式 (3D),延时模式、用于多孔的阶段扫描模式,或是它们的组合。
Q2的测量
共焦强度和寿命成像
- 1p或2p共焦图像
- 频域或TCSPC的FLIM
- 磷光寿命成像 (PLIM)
- 偏振图像
稳态和时间解析偏振各向异性成像
荧光波动光谱 (FFS)
- 荧光相关光谱 (FCS)
- 荧光互相关光谱 (FCCS)
- 光子计数直方图 (PCH)
- 荧光寿命相关光谱 (FLCS)
- 扫描FCS
- 数量和亮度 (N&B)
- 光栅成像相关光谱 (RICS)
粒子追踪 (自选的)
- 分子轨迹的3D重建
单分子FRET突发分析
- 突发分析
- FRET和相关方法
- PIE-FRET方法
反聚束
Q2的产品配件
更多产品选择
-
灌注系统
这款蠕动泵为滑台上保持样本状态 (温度、pH等等) 提供了解决方案。
-
灌溉系统
当使用水物镜进行长时间测量时,它可以防止液体变干。
-
自动对焦保持
它通过使用主动反馈防止漂移,让物镜的焦点位置保持数个小时。
-
样本温度控制
滑台顶部的培养箱或是一个完整的外壳可以用于维持细胞培养的环境条件。
-
落射荧光灯
您可以通过Epi模块将您的样本可视化。请选择弧光灯或 LED 作为光源以及合适的滤光片立方体以添加到显微镜盒中。
-
原子力显微镜 (AFM)
与以下型号完全集成:
JPK-Bruker的NanoWizard
Bruker的Resolve
对于其他型号,请联系ISS。
Q2的产品软件
VistaVision
VistaVision是一款用于共焦显微镜应用的完整软件包,其中包括仪器控制、数据采集和数据处理。它易于使用,该软件易于使用,通过模块化组件开发,可在特定仪器配置被选择时激活。模块包括:
- FLIM/PLIM成像
- FFS
- smFRET
- 粒子追踪
产品资源
-
“Membrane lipid nanodomains modulate HCN pacemaker channels in nociceptor DRG neurons.” Handlin, L.J., Macchi, N.L., Dumaire, N.L.A., Salih, L., Lessie, E.N., McCommis, K.S., Moutal, A. & Dai, G. Nature Communications, 15(1), 2024, Nov. doi: 10.1038/s41467-024-54053-z.
-
“Rapid and specific detection of nanoparticles and viruses one at a time using microfluidic laminar flow and confocal fluorescence microscopy.” Drori, P., Mouhadeb, O., Moya M.G.G., Razvag, Y., Alcalay, R., Klocke, P., Cordes, T., Zahavy, E. & Lerner, E. iScience, 27(10), p. 110982, 2024, Oct. doi: 10.1016/j.isci.2024.110982.
-
“Discordant Antigenic Properties of Soluble and Virion SARS-CoV-2 Spike Proteins.” Sameer, K., Souradip, D., M., S.M., A., S.G., L., D.A. & Krishanu, R. Viruses, 16(3), p. 407, 2024, Mar.
-
“Unravelling Immune‐Inflammatory Responses and Lysosomal Adaptation: Insights from Two‐Photon Excited Delayed Fluorescence Imaging.” Xiang, W., Gaona, S., Shengnan, X., Yuansheng, S., Hailin, Q., Qinghua, W., Xiaowan, H., Qingyang, Z., Tiantai, Z. & Hai‐Yu, H. Advanced Healthcare Materials, 2024, Mar.
-
“Direct regulation of the voltage sensor of HCN channels by membrane lipid compartmentalization.” Handlin, L.J. & Dai, G. Nature Communications, 14(1), 2023, Oct. doi: 10.1038/s41467-023-42363-7.
-
“Fluorescent protein lifetimes report densities and phases of nuclear condensates during embryonic stem-cell differentiation.” Joron, K., Viegas, J.O., Haas-Neill, L., Bier, S., Drori, P., Dvir, S., Lim, P.S.L., Rauscher, S., Meshorer, E. & Lerner, E. Nature Communications, 14(1), 2023, Aug. doi: 10.1038/s41467-023-40647-6.
-
“Plasmonic Nanodiamonds.” Liang, L., Zheng, P., Jia, S., Ray, K., Chen, Y. & Barman, I. Nano Letters, 23(12), pp. 5746–5754, 2023, Jun. doi: 10.1021/acs.nanolett.3c01514.
-
“Bioorthogonal Lanthanide Molecular Probes for Near-Infrared Fluorescence and Mass Spectrometry Imaging.” Jin, G.-Q., Sun, D.-e., Xia, X., Jiang, Z.-F., Cheng, B., Ning, Y., Wang, F., Zhao, Y., Chen, X. & Zhang, J.-L. Angewandte Chemie International Edition, 61(43), 2022, Sep. doi: 10.1002/anie.202208707.
-
“The structural heterogeneity of α-synuclein is governed by several distinct subpopulations with interconversion times slower than milliseconds.” Chen, J., Zaer, S., Drori, P., Zamel, J., Joron, K., Kalisman, N., Lerner, E. & Dokholyan, N.V. Structure, 29(9), pp. 1048–1064.e6, 2021, Sep. doi: 10.1016/j.str.2021.05.002.
-
“Multiplexed patterning of hybrid lipid membrane and protein arrays for cell signaling study.” Ti, Y.-T., Cheng, H.-C., Li, Y. & Tu, H.-L. Lab on a Chip, 21(14), pp. 2711–2720, 2021, Sep. doi: 10.1039/d1lc00178g.
-
“The structural heterogeneity of α-synuclein is governed by several distinct subpopulations with interconversion times slower than milliseconds.” Chen, J., Zaer, S., Drori, P., Zamel, J., Joron, K., Kalisman, N., Lerner, E. & Dokholyan, N.V. Structure, 29(9), pp. 1048–1064.e6, 2021, Sep. doi: 10.1016/j.str.2021.05.002.
-
“Low-Dimensional Organic Metal Halide Hybrids with Excitation-Dependent Optical Waveguides from Visible to Near-Infrared Emission.” Wu, S., Zhou, B. & Yan, D. ACS Applied Materials & Interfaces, 13(22), pp. 26451–26460, 2021, May. doi: 10.1021/acsami.1c03926.
-
“Genetic encoding of a highly photostable, long lifetime fluorescent amino acid for imaging in mammalian cells.” Jones, C.M., Robkis, D.M., Blizzard, R.J., Munari, M., Venkatesh, Y., Mihaila, T.S., Eddins, A.J., Mehl, R.A., Zagotta, W.N., Gordon, S.E. & Petersson, E.J. Chemical Science, 12(36), pp. 11955–11964, 2021, Feb. doi: 10.1039/d1sc01914g.
-
“Near-Unity Cyan-Green Emitting Lead-Free All-Inorganic Cesium Copper Chloride Phosphors for Full-Spectrum White Light-Emitting Diodes.” Bai, W., Shi, S., Lin, T., Zhou, T., Xuan, T. & Xie, R.-J. Advanced Photonics Research, 2(3), p. 2000158, 2021, Feb. doi: 10.1002/adpr.202000158.
-
“Rationally designed organelle-specific thermally activated delayed fluorescence small molecule organic probes for time-resolved biological applications.” Zhang, Q., Xu, S., Li, M., Wang, Y., Zhang, N., Guan, Y., Chen, M., Chen, C.-F. & Hu, H.-Y. Chemical Communications, 55(39), pp. 5639–5642, 2019. doi: 10.1039/c9cc00898e.
-
“Nanoscopic Insights of Amphiphilic Peptide against the Oligomer Assembly Process to Treat Huntington's Disease.” He, R.-Y., Lai, X.-M., Sun, C.-S., Kung, T.-S., Hong, J.-Y., Jheng, Y.-S., Liao, W.-N., Chen, J.-K., Liao, Y.-F., Tu, P.-H. & Huang, J.J.-T. Advanced Science, 7(2), p. 1901165, 2019, Dec. doi: 10.1002/advs.201901165.
-
“High Efficiency (16.37%) of Cesium Bromide—Passivated All-Inorganic CsPbI2Br Perovskite Solar Cells.” Zhang, Y., Wu, C., Wang, D., Zhang, Z., Qi, X., Zhu, N., Liu, G., Li, X., Hu, H., Chen, Z., Xiao, L. & Qu, B. Solar RRL, 3(11), p. 1900254, 2019, Aug. doi: 10.1002/solr.201900254.
-
“Concurrent Exposure of Neutralizing and Non-neutralizing Epitopes on a Single HIV-1 Envelope Structure.” Ray, K., Mengistu, M., Orlandi, C., Pazgier, M., Lewis, G.K. & Devico, A.L. Frontiers in Immunology, 10(2), p. 1901165, 2019, Jul. doi: 10.3389/fimmu.2019.01512.
-
“FAPbI3 Flexible Solar Cells with a Record Efficiency of 19.38% Fabricated in Air via Ligand and Additive Synergetic Process.” Wu, C., Wang, D., Zhang, Y., Gu, F., Liu, G., Zhu, N., Luo, W., Han, D., Guo, X., Qu, B., Wang, S., Bian, Z., Chen, Z. & Xiao, L. Advanced Functional Materials, 29(34), p. 1902974, 2019, Jun. doi: 10.1002/adfm.201902974.
-
“Highly luminescent, biocompatible ytterbium(
iii ) complexes as near-infrared fluorophores for living cell imaging.” Ning, Y., Tang, J., Liu, Y.-W., Jing, J., Sun, Y. & Zhang, J.-L. Chemical Science, 9(15), pp. 3742–3753, 2018. doi: 10.1039/c8sc00259b. -
“Band-Aligned Polymeric Hole Transport Materials for Extremely Low Energy Loss α-CsPbI3 Perovskite Nanocrystal Solar Cells.” Yuan, J., Ling, X., Yang, D., Li, F., Zhou, S., Shi, J., Qian, Y., Hu, J., Sun, Y., Yang, Y., Gao, X., Duhm, S., Zhang, Q. & Ma, W. Joule, 2(11), pp. 2450–2463, 2018, Nov. doi: 10.1016/j.joule.2018.08.011.
-
“Composition-Graded Cesium Lead Halide Perovskite Nanowires with Tunable Dual-Color Lasing Performance.” Huang, L., Gao, Q., Sun, L.-D., Dong, H., Shi, S., Cai, T., Liao, Q. & Yan, C.-H. Advanced Materials, 30(27), p. 1800596, 2018, May. doi: 10.1002/adma.201800596.
-
“Targeting the Late Stage of HIV-1 Entry for Antibody-Dependent Cellular Cytotoxicity: Structural Basis for Env Epitopes in the C11 Region.” Tolbert, W.D., Gohain, N., Alsahafi, N., Van, V., Orlandi, C., Ding, S., Martin, L., Finzi, A., Lewis, G.K., Ray, K. & Pazgier, M. Structure, 25(11), pp. 1719–1731.e4, 2017, Nov. doi: 10.1016/j.str.2017.09.009.
-
“Molecular basis for epitope recognition by non-neutralizing anti-gp41 antibody F240.” Gohain, N., Tolbert, W.D., Orlandi, C., Richard, J., Ding, S., Chen, X., Bonsor, D.A., Sundberg, E.J., Lu, W., Ray, K., Finzi, A., Lewis, G.K. & Pazgier, M. Scientific Reports, 6(1), pp. 1719–1731.e4, 2016, Nov. doi: 10.1038/srep36685.