激光二极管
Overview of PL1
PL1是一款时间分辨共焦显微镜,主要设计用于在对大面积样本采集荧光寿命成像 (FLIM) 时需要极高灵敏度的材料科学研究。尺寸上至100 x 100 mm (直立显微镜) 或120 x 75 mm (倒置显微镜) 的样本可以被放置在高精度、电脑操控的XY坐标台上。它拥有22 nm的分辨率,以像素为单位进行移动。
激发光源为一个激光二极管、一个脉冲激光器或是一个多光子激光器。荧光会由一个探测器收集,它能够覆盖350 – 1050 nm的波长范围。可以增加额外的探测器,其中包括用于像素光谱获取的摄谱仪。
PL1的关键特征
大面积的FLIM
正置显微镜:
100 mm x 100 mm
倒置显微镜:
120 mm x 75 mm
寿命测量
从100 ps 到100 ms
模块化
激光波长、探测器、探测通道数量和显微镜的选择。
数据相当清晰!
Product Specifications for PL1
显微镜与耦合
- 框架格式:正置或倒置研究显微镜
- 放大:10X和60X,油浸物镜 (标准);可选择:从2X到100X
- 空间分辨率:衍射极限
- 眼睛观测:10X目镜明场,配有屈光度调节,视场:22mm
- 成像模块:
- 传输模式:HAL Köhler照明用于通过CMOS相机实现明场成像,带有相位比较和DIC选项
- 共焦光致发光成像:激光照明,单点或扫描
XYZ滑台扫描
闭环DC步进控制
- XY轴移动范围:100 mm x 100 mm (正置), 120 mm x 75 mm (倒置)
- XY轴:分辨率 = 22 nm,最大速率 = 7 mm/s, RMS重精度
- Z轴:分辨率 = 50 nm,最大速率 = 0.6 mm/s,重复精度 = 100 nm
激光源
- CW或脉冲二极管激光器,重复率上至80 MHz (可用软件条件)
- 激光发射器可容纳上至3个激光器,从375 nm至980 nm
- 每个激光器都有自己的强度控制和快门 (通过软件操控)
数据采集单元FastFLIM
- 寿命测量范围:从100 ps到100 ms
- 数据采集模式:光子模式、时间标记模式、时间分辨时间标记模式 (TTTR)
- 死区时间3.125 ns,上至60 x 106 次/秒
- 电脑连接:USB
探测器
- 暗计数< 100/秒; TTS < 350 ps;
- 波长范围:350 - 1050 nm;
- 量子产率> 70% (700 nm处)
扫描模式
- X, XY, XZ, XYZ, t, Xt, XYt, XZt, XYZt
- 图像格式除了包含成像参数信息的专有文件格式以外,VistaVision还支持以各种格式 (包括JPEG、TIFF、PNG和AVI) 导出获取的数据
- 通过各种查找表、对比、阈值处理、平滑、过滤、缩放、通过直方图或在线分析进行的统计学分析可用实现图像处理和分析视觉化。
寿命数据分析程式
- 基于时域和频域中Marquardt-Levenberg最小化算法的非线性最小二乘限制反卷积拟合程式
- 无模型相位图方法提供即时并且无偏差的结果
软件
- VistaVision
电脑和显示屏
- 高性能处理器,32 GB RAM, Windows 11,64比特
- 32" 显示屏,2556 x 1440分辨率
电源要求
- 通用电源输入:110 - 240 V, 50/60 Hz, 100 VAC
PL1的测量
强度和寿命成像
荧光波动光谱 (FFS)
单分子FRET突发分析
PL1的配置示例
PL1的产品配件
PL1的产品软件
VistaVision
VistaVision是一款用于共焦显微镜应用的完整软件包,其中包括仪器控制、数据采集和数据处理。它易于使用,该软件易于使用,通过模块化组件开发,可在特定仪器配置被选择时激活。模块包括:
- FLIM/PLIM成像
- FFS
- smFRET
- 粒子追踪
产品资源
-
“Correlating Photophysical Properties with Stereochemical Expression of 6s2 Lone Pairs in Two-dimensional Lead Halide Perovskites.” Gu, J., Tao, Y., Fu, T., Guo, S., Jiang, X., Guan, Y., Li, X., Li, C., Lü, X. & Fu, Y. Angewandte Chemie International Edition, 62(30), 2023, Jun. doi: 10.1002/anie.202304515.
-
“Phonon-assisted upconversion in twisted two-dimensional semiconductors.” Dai, Y., Qi, P., Tao, G., Yao, G., Shi, B., Liu, Z., Liu, Z., He, X., Peng, P., Dang, Z., Zheng, L., Zhang, T., Gong, Y., Guan, Y., Liu, K. & Fang, Z. Light: Science & Applications, 12(1), 2023, Jan. doi: 10.1038/s41377-022-01051-9.
-
“Color-tunable persistent luminescence in 1D zinc–organic halide microcrystals for single-component white light and temperature-gating optical waveguides.” Zhou, B. & Yan, D. Chemical Science, 13(25), pp. 7429–7436, 2022. doi: 10.1039/d2sc01947g.
-
“Stereochemically Active Lone Pairs and Nonlinear Optical Properties of Two-Dimensional Multilayered Tin and Germanium Iodide Perovskites.” Li, X., Guan, Y., Li, X. & Fu, Y. Journal of the American Chemical Society, 144(39), pp. 18030–18042, 2022, Sep. doi: 10.1021/jacs.2c07535.
-
“Quasi-2D Ruddlesden–Popper Perovskites with Low Trap-States for High Performance Flexible Self-Powered Ultraviolet Photodetectors.” Han, J., Liu, C., Zhang, Y., Guan, Y., Zhang, X., Yu, W., Tang, Z., Liang, Y., Wu, C., Zheng, S. & Xiao, L. Advanced Optical Materials, 10(23), 2022, Sep. doi: 10.1002/adom.202201431.
-
“Achieving Small Temperature Coefficients in Carbon-Based Perovskite Solar Cells by Enhancing Electron Extraction.” Zhang, X., Guan, Y., Zhang, Y., Yu, W., Wu, C., Han, J., Zhang, Y., Chen, C., Zheng, S. & Xiao, L. Advanced Optical Materials, 10(23), p. 2201598, 2022, Sep. doi: 10.1002/adom.202201598.
-
“Red-Emissive Organic Room-Temperature Phosphorescence Material for Time-Resolved Luminescence Bioimaging.” Dai, W., Zhang, Y., Wu, X., Guo, S., Ma, J., Shi, J., Tong, B., Cai, Z., Xie, H. & Dong, Y. CCS Chemistry, 4(8), pp. 2550–2559, 2022, Aug. doi: 10.31635/ccschem.021.202101120.
-
“Understanding Electron–Phonon Interactions in 3D Lead Halide Perovskites from the Stereochemical Expression of 6s2 Lone Pairs.” Huang, X., Li, X., Tao, Y., Guo, S., Gu, J., Hong, H., Yao, Y., Guan, Y., Gao, Y., Li, C., Lü, X. & Fu, Y. Journal of the American Chemical Society, 144(27), pp. 12247–12260, 2022, Jun. doi: 10.1021/jacs.2c03443.
-
“Functionalized SnO2 films by using EDTA-2~M for high efficiency perovskite solar cells with efficiency over 23%.” Tao, J., Liu, X., Shen, J., Wang, H., Xue, J., Su, C., Guo, H., Fu, G., Kong, W. & Yang, S. Chemical Engineering Journal, 430, p. 132683, 2022, Feb. doi: 10.1016/j.cej.2021.132683.
-
“Chemical Polishing of Perovskite Surface Enhances Photovoltaic Performances.” Zhao, L., Li, Q., Hou, C.-H., Li, S., Yang, X., Wu, J., Zhang, S., Hu, Q., Wang, Y., Zhang, Y., Jiang, Y., Jia, S., Shyue, J.-J., Russell, T.P., Gong, Q., Hu, X. & Zhu, R. Journal of the American Chemical Society, 144(4), pp. 1700–1708, 2022, Jan. doi: 10.1021/jacs.1c10842.
-
“Depth-dependent defect manipulation in perovskites for high-performance solar cells.” Zhang, Y., Wang, Y., Zhao, L., Yang, X., Hou, C.-H., Wu, J., Su, R., Jia, S., Shyue, J.-J., Luo, D., Chen, P., Yu, M., Li, Q., Li, L., Gong, Q. & Zhu, R. Energy & Environmental Science, 14(12), pp. 6526–6535, 2021. doi: 10.1039/d1ee02287c.
-
“Lead-free Double Perovskite Cs2AgIn0.9Bi0.1Cl6 Quantum Dots for White Light-Emitting Diodes.” Zhang, Y., Zhang, Z., Yu, W., He, Y., Chen, Z., Xiao, L., Shi, J.-j., Guo, X., Wang, S. & Qu, B. Advanced Science, 9(2), p. 2102895, 2021, Nov. doi: 10.1002/advs.202102895.
-
“Additive Engineering for Efficient and Stable MAPbI3-Perovskite Solar Cells with an Efficiency of over 21%.” Tao, J., Wang, Z., Wang, H., Shen, J., Liu, X., Xue, J., Guo, H., Fu, G., Kong, W. & Yang, S. ACS Applied Materials & Interfaces, 13(37), pp. 44451–44459, 2021, Sep. doi: 10.1021/acsami.1c13136.
-
“Lanthanide Upconverted Microlasing: Microlasing Spanning Full Visible Spectrum to Near-Infrared under Low Power, CW Pumping.” Yang, X.-F., Lyu, Z.-Y., Dong, H., Sun, L.-D. & Yan, C.-H. Small, 17(41), 2021, Sep. doi: 10.1002/smll.202103140.
-
“Low-Dimensional Organic Metal Halide Hybrids with Excitation-Dependent Optical Waveguides from Visible to Near-Infrared Emission.” Wu, S., Zhou, B. & Yan, D. ACS Applied Materials & Interfaces, 13(22), pp. 26451–26460, 2021, May. doi: 10.1021/acsami.1c03926.
-
“Near-Unity Cyan-Green Emitting Lead-Free All-Inorganic Cesium Copper Chloride Phosphors for Full-Spectrum White Light-Emitting Diodes.” Bai, W., Shi, S., Lin, T., Zhou, T., Xuan, T. & Xie, R.-J. Advanced Photonics Research, 2(3), p. 2000158, 2021, Feb. doi: 10.1002/adpr.202000158.
-
“Dual-mode excitation β-NaGdF4:Yb/Er@β-NaGdF4:Yb/Nd core–shell nanoparticles with NIR-II emission and 5 nm cores: controlled synthesis via NaF/RE regulation and the growth mechanism.” Cheng, C., Xu, Y., De, G., Wang, J., Wu, W., Tian, Y. & Wang, S. CrystEngComm, 22(38), pp. 6330–6338, 2020. doi: 10.1039/d0ce01113d.
-
“Superior Carrier Lifetimes Exceeding 6 µs in Polycrystalline Halide Perovskites.” Yang, X., Fu, Y., Su, R., Zheng, Y., Zhang, Y., Yang, W., Yu, M., Chen, P., Wang, Y., Wu, J., Luo, D., Tu, Y., Zhao, L., Gong, Q. & Zhu, R. Advanced Materials, 32(39), p. 2002585, 2020, Aug. doi: 10.1002/adma.202002585.
-
“Engineering of Upconverted Metal–Organic Frameworks for Near-Infrared Light-Triggered Combinational Photodynamic/Chemo-/Immunotherapy against Hypoxic Tumors.” Shao, Y., Liu, B., Di, Z., Zhang, G., Sun, L.-D., Li, L. & Yan, C.-H. Journal of the American Chemical Society, 142(8), pp. 3939–3946, 2020, Jan. doi: 10.1021/jacs.9b12788.
-
“Upconversion Lifetime Imaging of Highly-Crystalline Gd-Based Fluoride Nanocrystals Featuring Strong Luminescence Resulting from Multiple Luminescent Centers.” Xu, Y., Zeng, Z., Zhang, D., Liu, S., Wang, X., Li, S., Cheng, C., Wang, J., Liu, Y., De, G., Zhang, C., Qin, W. & Du, Y. Advanced Optical Materials, 8(4), p. 1901495, 2019, Dec. doi: 10.1002/adom.201901495.
-
“Multifunctional Tetracene/Pentacene Host/Guest Nanorods for Enhanced Upconversion Photodynamic Tumor Therapy.” Zhang, R., Guan, Y., Zhu, Z., Lv, H., Li, F., Sun, S. & Li, J. ACS Applied Materials & Interfaces, 11(41), pp. 37479–37490, 2019, Sep. doi: 10.1021/acsami.9b12967.
-
“High Efficiency (16.37%) of Cesium Bromide—Passivated All-Inorganic CsPbI2Br Perovskite Solar Cells.” Zhang, Y., Wu, C., Wang, D., Zhang, Z., Qi, X., Zhu, N., Liu, G., Li, X., Hu, H., Chen, Z., Xiao, L. & Qu, B. Solar RRL, 3(11), p. 1900254, 2019, Aug. doi: 10.1002/solr.201900254.
-
“FAPbI3 Flexible Solar Cells with a Record Efficiency of 19.38% Fabricated in Air via Ligand and Additive Synergetic Process.” Wu, C., Wang, D., Zhang, Y., Gu, F., Liu, G., Zhu, N., Luo, W., Han, D., Guo, X., Qu, B., Wang, S., Bian, Z., Chen, Z. & Xiao, L. Advanced Functional Materials, 29(34), p. 1902974, 2019, Jun. doi: 10.1002/adfm.201902974.
-
“Band-Aligned Polymeric Hole Transport Materials for Extremely Low Energy Loss α-CsPbI3 Perovskite Nanocrystal Solar Cells.” Yuan, J., Ling, X., Yang, D., Li, F., Zhou, S., Shi, J., Qian, Y., Hu, J., Sun, Y., Yang, Y., Gao, X., Duhm, S., Zhang, Q. & Ma, W. Joule, 2(11), pp. 2450–2463, 2018, Nov. doi: 10.1016/j.joule.2018.08.011.
-
“Composition-Graded Cesium Lead Halide Perovskite Nanowires with Tunable Dual-Color Lasing Performance.” Huang, L., Gao, Q., Sun, L.-D., Dong, H., Shi, S., Cai, T., Liao, Q. & Yan, C.-H. Advanced Materials, 30(27), p. 1800596, 2018, May. doi: 10.1002/adma.201800596.