ChronosBH is a time-domain fluorometer with picosecond resolution. Its optical design and automatic instrument control are state-of-the-art for time-resolved fluorometers.
ChronosBH is fully-automated through Vinci, a user-friendly, Windows-based software package.
Key features of ChronosBH include:
- Flexible instrument configuration with a variety of light sources
- A compact footprint and short optical path length for maximum sensitivity and efficient light coupling into the sample
- Millisecond to picosecond lifetime measurement capabilities
- Full automation of instrument components including: cuvette holder, polarizers, shutters, filterwheel, monochromators and stirrers
- PC-controlled integration of temperature bath, titrator, stopped-flow apparatus and pressure pump
- Upgradable to include steady-state measurements
- T-format and parallel beam optical design for fast and precise polarization measurements
Specifications for ChronosBH
Light Source |
|
Focusing & Collection Geometry | Parallel beam design for precise polarization measurements |
Polarizers | UV grade Glan-Thompson with L/A=2.0 |
Detectors | PMTs and MCPs |
Detection Modes | Fast analog and photon counting electronics |
Wavelength Range | 160 - 850 nm (MCP), 185 - 850 (PMT) |
TCSPC Modules | • Electrical Time Resolution down to 8 ps FWHM/5 ps rms • Minimum Time Channel Width 820 fs • Total useful count rate up to 4 MHz • Measurement times down to 1 ms |
Lifetime Measurements Range | 10-11 sec to 10-2 sec |
OS Requirements | Windows 10 |
Power Requirements | Universal power input: 110-240 V, 50/60 Hz, 400 VAC |
Dimensions | 540 mm (L) x 425 mm (W) x 235 mm (H) |
Weight | 25 kg |
Measurement Examples from ChronosBH

Time-Domain Intensity Decay
Time-domain intensity decay of a paper sample acquired on ChronosBH using a 405-nm pulsed laser diode. The paper sample was placed in a front-surface accessory. The data is best fitted by a single exponential decay time of 0.94 ns (x2 = 1.25).
Time-Domain Anisotropy Decay
Time-domain anisotropy decays of Coumarin 6 in ethylene glycol acquired on ChronosBH using a 447-nm pulsed laser diode. The emission was collected through a KV 505 long high pass filter. The calculated value for θ = 2.6 ns with R0 = 0.38 and τ = 2.3 ns, T = 20-21°C.Biochemistry & Molecular Biology (Membranes, Nucleic Acids, Proteins)
![]() |
Clinically Divergent Mutation Effects on the Structure and Function of the Human Cardiac Tropomyosin Overlap. McConnell, M., Tal Grinspan, L., Williams, M.R., Lynn, M.L., Schwartz, B.A., Fass, O.Z., Schwartz, S.D., Tardiff, J.C. Biochemistry. 2017 Jul 5;56(26):3403-3413. doi: 10.1021/acs.biochem.7b00266. Epub 2017 Jun 21. |
![]() |
Interaction of Hydralazine with Human Serum Albumin and Effect of Β-Cyclodextrin on Binding: Insights from Spectroscopic and Molecular Docking Techniques Bolattin, M.B., Nandibewoor, S.T., Joshi, S.D., Dixit, S.R., Chimatadar, S.A. Ind. Eng. Chem. Res., 2016, 55 (19), pp 5454–5464. |
![]() |
Without Binding ATP, Human Rad51 Does Not Form Helical Filaments on ssDNA. Schay, G., Borka, B., Kernya, L., Bulyáki, É., Kardos, J., Fekete, M., Fidy, J. J Phys Chem B. 2016 Mar 10;120(9):2165-78. doi: 10.1021/acs.jpcb.5b12220. Epub 2016 Mar 1. |
![]() |
Hydroxymethylation of DNA Influences Nucleosomal Conformation and Stability in Vitro. Mendonca, A., Chang, E.H., Liu, W., Yuan, C. Biochim Biophys Acta., 2014, 1839(11), 1323-9. |
![]() |
Solution Scattering and FRET Studies on Nucleosomes Reveal DNA Unwrapping Effects of H3 and H4 Tail Removal. Andresen, K., Jimenez-Useche, I., Howell, S.C., Yuan, C., Qiu, X. PLoS One., 2013, 8(11), e78587. |
![]() |
DNA Methylation Regulated Nucleosome Dynamics. Jimenez-Useche, I., Ke, J., Tian, Y., Shim, D., Howell, S.C., Qiu, X., Yuan, C. Sci Rep., 2013, 3, 2121. |
![]() |
Clipping of Flexible Tails of Histones H3 and H4 Affects the Structure and Dynamics of the Nucleosome Nurse, N.P., Jimenez-Useche, I., Smith, I.T., Yuan, C. Biophys J., 2013, 104(5), 1081-8. |
![]() |
The Effect of DNA CpG Methylation on the Dynamic Conformation of a Nucleosome Jimenez-Useche, I., Yuan, C. Biophysical Journal, 2012, 103, 2502-2512. |
![]() |
Conformational Dynamics of Titin PEVK Explored with FRET Spectroscopy Huber, T., Grama, L., Hetényi, C., Schay, G., Fülöp, L., Penke, B., Kellermayer, M.S.Z. Biophysical Journal, 2012, 103(7), 1480-1489. |
Material Science
![]() |
Scalable Ligand-Mediated Transport Synthesis of Organic–Inorganic Hybrid Perovskite Nanocrystals with Resolved Electronic Structure and Ultrafast Dynamics Wang, L., Williams, N.E., Malachosky, E.W., Otto, J.P., Hayes, D., Wood, R.E., Guyot-Sionnest, P., Engel, G.S. ACS Nano, 2017, 11 (3), pp 2689–2696. |
![]() |
Exploring an Emissive Charge Transfer Process in Zero-Twist Donor–Acceptor Molecular Design as a Dual-State Emitter Kumar, S., Singh, P., Kumar, P., Srivastava, R., Pal, S.K., Ghosh, S. J. Phys. Chem. C, 2016, 120 (23), pp 12723–12733 |
Photosynthesis
![]() |
Lessons From Chlorophylls: Modifications of Porphyrinoids Towards Optimized Solar Energy Conversion. Karcz, D., Boron, B., Matwijczuk, A., Furso, J., Staron, J., Ratuszna, A., Fiedor, L. Molecules., 2014, 19(10), 15938-54. |
Physical Chemistry
![]() |
Photophysical and Electrochemical Characterization of BODIPY-Containing Dyads Comparing the Influence of an A-D-A versus D-A Motif on Excited-State Photophysics Hendel, S.J., Poe, A.M., Khomein, P., Bae, Y., Thayumanavan, S., Young, E.R. J. Phys. Chem. A, 2016, 120 (44), pp 8794-8803 |
![]() |
Photophysical Characterization of [Ir(ppy)2(dmb)][PF6] Towards Application in Light-Emitting Electrochemical Cells (LECs) Zanoni, K.P., Sanematsu, M., Murakami Iha, N.Y. Inorg Chem, 2014, 43, 162-164. |
![]() |
Solid State Molecular Device Based on a Rhenium(I) Polypyridyl Complex Immobilized on TiO2 Films Patrocinio, A.O., Frin, K.P., Murakami Iha, N.Y. Inorg. Chem., 2013, 52, 5889-5896. |
![]() |
A Pyrene Maleimide with a Flexible Linker for Sampling of Longer Inter-Thiol Distances by Excimer Formation Niwayama, S., Kassar, A.S., Zhao, T., Sutton, R.B., Altenberg, G.A. PLoS ONE, 2011, 6(10). |
Diagnostics
![]() |
Chlorin-Based Nanoscale Metal-Organic Framework Systemically Rejects Colorectal Cancers via Synergistic Photodynamic Therapy and Checkpoint Blockade Immunotherapy. Lu, K., He, C., Guo, N., Chan, C., Ni, K., Weichselbaum, R.R., Lin, W. J Am Chem Soc. 2016 Sep 28;138(38):12502-10. doi: 10.1021/jacs.6b06663. Epub 2016 Sep 14. |
![]() |
A Chlorin-Based Nanoscale Metal-Organic Framework for Photodynamic Therapy of Colon Cancers. Lu, K., He, C., Lin, W. J Am Chem Soc. 2015 Jun 24;137(24):7600-3. doi: 10.1021/jacs.5b04069. Epub 2015 Jun 12. |
![]() |
A Dual-Modality Optical Biopsy Approach for In Vivo Detection of Prostate Cancer in Rat Model Sharma, V., Patel, N., Shen, J., Tang, L., Alexandrakis, G., Liu, H. Journal of Innovative Optical Health Sciences, 2011, 4(3), 269-277. |
![]() |
Auto-fluorescence Lifetime and Light Reflectance Spectroscopy for Breast Cancer Diagnosis: Potential Tools for Intra-Operative Margin Detection Sharma, V., Shivalingaiah, S., Peng., Y., Euhus, D., Gryczynski, Z., Liu, H. Biomed Opt Express, 2012, 3(8), 1825-1840. |