ChronosFD is a frequency-domain instrument based on laser diodes and light emitting diodes (LEDs). This powerful tool offers all the benefits of a complete time-resolved fluorometer but at an affordable price.
ChronosFD is fully-automated through Vinci, a user-friendly, Windows-based software package.
Key features of ChronosFD include:
- Flexible instrument configuration with a variety of light sources (laser diodes, LEDs and Ti:Sapphire laser)
- A compact footprint and short optical path length for maximum sensitivity and efficient light coupling into the sample
- Millisecond to picosecond lifetime measurement capabilities
- Full automation of instrument components including: cuvette holder, polarizers, shutters, filterwheel, monochromators and stirrers
- PC-controlled integration of temperature path, titrator, stopped-flow apparatus and pressure pump
- Upgradable to a full steady-state and time-resolved instrument
- T-format and parallel beam optical design for fast and precise polarization measurements
- Powered by Vinci-Multidimensional Fluorescence Spectroscopy
Specifications for ChronosFD
Light Source | Laser diodes (405, 436, 473, 635, 690, 780 and 830 nm), LEDs (280, 300, 335, 345, 460, 500, and 520 nm), and Ti:Sapphire, white and other pulsed lasers |
Focusing & Collection Geometry | Parallel beam design for precise polarization measurements |
Polarizers | UV grade Glan-Thompson with L/A=2.0 |
Detectors | PMTs and MCPs |
Detection Modes | Fast analog and photon counting electronics |
Wavelength Range | 160 - 850 nm (MCP), 185 - 850 (PMT) |
TCSPC Modules | • Electrical Time Resolution down to 8 ps FWHM/5 ps rms • Minimum Time Channel Width 820 fs • Total useful count rate up to 4 MHz • Measurement times down to 1 ms |
Lifetime Measurements Range | 10-11 sec to 10-2 sec |
OS Requirements | Windows 10 |
Power Requirements | Universal power input: 110-240 V, 50/60 Hz, 400 VAC |
Dimensions | 540 mm (L) x 425 mm (W) x 235 mm (H) |
Weight | 25 kg |
Measurement Examples from ChronosFD

Fluorescein in Propylene Glycol
Frequency-domain anisotropy decays (Differential Polarized Phase Angle and Amplitude Ratio) of Fluorescein in propylene glycol measured on ChronosFD using an excitation wavelength of 470-nm (Xenon lamp). The emission was collected using an OG530 long-pass filter. Calculated values for &thera; = 5.3 ns with R0 = 0.40 and τ = 4 ns, T = 27-28°C.
BodipyFL in Water
Frequency responses (phase and modulation) of BodipyFL in water acquired on ChronosFD using a 471-nm laser diode. The emission was collected through a high pass filter 520KV. The data is best fitted with a single exponential decay time of 5.87 ns (x2 = 0.97).Biochemistry & Molecular Biology (Membranes, Nucleic Acids, Proteins)
![]() |
Cotranslational Protein Folding Within the Ribosome Tunnel Influences Trigger-factor Recruitment. Lin, K.F., Sun, C.S., Huang, Y.C., Chan, S.I., Koubek, J., Wu, T.H., Huang, J.J. Biophys J., 2012, 102(12), 2818-27. |
![]() |
The N-terminus of TDP-43 Promotes Its Oligomerization and Enhances DNA Binding Affinity. Chang, C.K., Wu, T.H., Wu, C.Y., Chiang, M.H., Toh, E.K., Hsu, Y.C., Lin, K.F., Liao, Y.H., Huang, T.H., Huang, J.J. Biochem Biophys Res Commun., 2012, 425(2), 219-24. |
![]() |
Efficient Isolation of Pseudomonas Aeruginosa Type III Secretion Translocators and Assembly of Heteromeric Transmembrane Pores in Model Membranes. Romano, F.B., Rossi, K.C., Savva, C.G., Holzenburg, A., Clerico, E.M., Heuck, A.P. Biochemistry., 2011, 50(33), 7117-31. |
![]() |
Production of Ribosome-released Nascent Proteins With Optimal Physical Properties. Ziehr, D.R., Ellis, J.P., Culviner, P.H., Cavagnero, S. Anal Chem., 2010, 82(11), 4637-43. |
![]() |
Excited-state Lifetime Studies of the Three Tryptophan Residues in the N-lobe of Human Serum Transferrin James, N.G., Ross, J.A., Mason, A.B., Jameson, D.M. Protein Science, 2010, 19, 99-110. |
![]() |
Confined Dynamics of a Ribosome-bound Nascent Globin: Cone Angle Analysis of Fluorescence Depolarization Decays in the Presence of Two Local Motions. Ellis, J.P., Culviner, P.H., Cavagnero, S. Protein Sci., 2009, 18(10), 2003-15. |
![]() |
Structural and Thermodynamic Characterization of T4 Lysozyme Mutants and the Contribution of Internal Cavities to Pressure Denaturation. Ando, N., Barstow, B., Baase, W.A., Fields, A., Matthews, B.W., Gruner, S.M. Biochemistry., 2008, 47(42), 11097-109. |
![]() |
Chain Dynamics of Nascent Polypeptides Emerging From the Ribosome. Ellis, J.P., Bakke, C.K., Kirchdoerfer, R.N., Jungbauer, L.M., Cavagnero, S. ACS Chem Biol., 2008, 3(9), 555-66. |
![]() |
Fructose-1,6-bisphosphate Acts Both as an Inducer and as a Structural Cofactor of the Central Glycolytic Genes Repressor (CggR). Zorrilla, S., Chaix, D., Ortega, A., Alfonso, C., Doan, T., Margeat, E., Rivas, G., Aymerich, S., Declerck, N., Royer, C.A. Biochemistry., 2007, 46(51), 14996-5008. |
![]() |
Inducer-Modulated Cooperative Binding of the Tetrameric CggR Repressor to Operator DNA Zorrilla, S., Doan, T., Alfonso, C., Margeat, E., Ortega, A., Rivas, G., Aymerich, S., Royer, C.A., Declerck, N. Biophsyical J., 2007, 92(9), 3215-3227. |
![]() |
Hydration of the Folding Transition State Ensemble of a Protein. Brun, L., Isom, D.G., Velu, P., García-Moreno, B., Royer, C.A. Biochemistry., 2006, 45(11), 3473-80. |
![]() |
Time-resolved Fluorescence Anisotropy Studies Show Domain-specific Interactions of Calmodulin With IQ Target Sequences of Myosin V. Bayley, P., Martin, S., Browne, P., Royer, C. Eur Biophys J., 2003, 32(2), 122-7. |
![]() |
Reorientational Dynamics of Enzymes Adsorbed on Quartz: A Temperature-Dependent Time-Resolved TIRF Anisotropy Study Czeslik, C., Royer, C., Hazlett, T., Mantulin, W. Biophys. J., 2003, 84, 2533-2541. |
![]() |
Equilibrium Binding of Estrogen Receptor With DNA Using Fluorescence Anisotropy. Ozers, M.S., Hill, J.J., Ervin, K., Wood, J.R., Nardulli, A.M., Royer, C.A., Gorski, J. J Biol Chem., 1997, 272(48), 30405-11. |
Environmental Studies
![]() |
Real-Time Determination of Picomolar Free Cu(II) in Seawater Using a Fluorescence-Based Fiber Optic Biosensor Zeng, H.-H., Thompson, R. B., Maliwal, B. P., Fones, G. R., Moffett, J. W., Fierke, C. A. Anal. Chem., 2003, 75(24), 6807-6812. |
Pharmaceutical Chemistry
![]() |
Characterization of Fluorinated Catansomes: A Promising Vector in Drug-delivery. Rosholm, K.R., Arouri, A., Hansen, P.L., González-Pérez, A., Mouritsen, O.G. Langmuir., 2012, 28(5), 2773-81. |
![]() |
Indocyanine Green-Loaded Biodegradable Nanoparticles: Preparation, Physicochemical Characterization and in Vitro Release Saxena, V., Sadoqi, M., Shao., J. Int. J. Pharm., 2004, 278(2), 293-301. |
![]() |
Enhanced Photo-Stability, Thermal-Stability and Aqueous-Stability of Indocyanine Green in Polymeric Nanoparticulate Systems Saxena, V., Sadoqi, M., Shao., J. J. Photochem. Photobiol., 2004, 74(1) 29-38. |
![]() |
Degradation Kinetics of Indocyanine Green in Aqueous Solution Saxena, V., Sadoqi, M., Shao., J. J. Pharm Sci.,2003, 92(10), 2090-2097. |
Physical Chemistry
![]() |
Developing Red-emissive Ruthenium(II) Complex-based Luminescent Probes for Cellular Imaging. Zhang, R., Ye, Z., Yin, Y., Wang, G., Jin, D., Yuan, J., Piper, J.A. Bioconjug Chem., 2012, 23(4), 725-33. |
![]() |
Noncovalent Assembly of a Metalloporphyrin and an Iron Hydrogenase Active-site Model: Photo-induced Electron Transfer and Hydrogen Generation. Li, X., Wang, M., Zhang, S., Pan, J., Na, Y., Liu, J., Akermark, B., Sun, L. J Phys Chem B., 2008, 112(27), 8198-202. |
Sensors
![]() |
Water Soluble Indodicarbocyanine Dyes Based on 2,3-dimethyl-3-(4-sulfobutyl)-3H-indole-5-sulfonic Acid Markova, L.I., Fedyunyayeva, I.A., Povrozin, Y.A., Semenova, O.M., Khabuseva, S.U., Terpetschnig, E.A., Patsenker, L.D. Dyes and Pigments, 2013, 96(2), 535-46. |
![]() |
Seta-633 - a NIR Fluorescence Lifetime Label For Low-Molecular-Weight Analytes Povrozin, Y.A., Kolosova, O.S., Obukhova, O.M., Tatarets, A.L., Sidorov, V.I., Terpetschnig, E.A., Patsenker, L.D. Bioconjug Chem., 2009, 20(9), 1807-12. |
![]() |
Near-Infrared, Dual-Ratiometric Fluorescent Label for Measurement of pH Povrozin, Y.A., Markova, L.I., Tatarets, A.L., Sidorov, V.I., Terpetschnig, E.A., Patsenker, L.D. Anal Biochem., 2009, 390(2), 136-40. |
![]() |
Synthesis of Water-Soluble, Ring-Substituted Squaraine Dyes and Their Evaluation as Fluorescent Probes and Labels Tatarets, A.L., Fedyunyayeva, I.A., Dyubko, T.S., Povrozin, Y.A., Doroshenko, A.O., Terpetschnig, E.A., Patsenker, L.D. Anal Chim Acta., 2006, 570(2), 214-23. |
![]() |
Fatty Acid Sensor for Low-Cost Lifetime-Assisted Ratiometric Sensing Using a Fluorescent Fatty Acid Binding Protein Bartolome, A., Bardliving, C., Rao G., Tolosa L. Analytical Biochemistry, 2005, 34(1), 133-139. |
![]() |
Dual-Labeled Glucose Binding Protein for Ratiometric Measurements of Glucose Ge, X., Tolosa, L., Rao, G. Analytical Chemistry, 2004, 76(5), 1403-10. |
![]() |
Reagentless Optical Sensing of Glutamine Using a Dual-Emitting Glutamine-Binding Protein Tolosa, L., Ge, X., Rao, G. Analytical Biochemistry, 2003, 314(2), 199-205. |
Accessories available for ChronosFD
The following accessories are available for ChronosFD. For more information please visit our Fluorescence Accessories page.