One-Cuvette Sample Compartment
Overview of ChronosDFD
ChronosDFD for lifetime measurements in complex decays in less than 1 second is fully-automated through Vinci, a user-friendly, Windows-based software package.
Key Features of ChronosDFD
Frequency Domain Measurements
Maximum Sensitivity
Fully Automated
Integration of External Devices
Upgradeable
- Flexible instrument configuration with a variety of light sources (laser diodes, LEDs and Ti:Sapphire laser)
- A compact footprint and short optical path length for maximum sensitivity and efficient light coupling into the sample
- Second to picosecond lifetime measurement capabilities
- Full automation of instrument components including: cuvette holder, polarizers, shutters, filterwheel, monochromators and stirrers
- PC-controlled integration of temperature path, titrator, stopped-flow apparatus and pressure pump
- Upgradable to a full steady-state instrument
- T-format and parallel beam optical design for fast and precise polarization measurements
- Powered by Vinci-Multidimensional Fluorescence Spectroscopy
Key Characteristics of Data Acquisition via Frequency-domain with ChronosDFD
- Fluorescence lifetime is calculated from two measureable parameters: phase angle and modulation
- Is a faster and less artifact-prone
- Allows one step measurements of anisotropy decays (rotational correlation times)
- Is better at resolving short lifetime contributions
- Is the method of choice for lifetime-based sensing and real-time measurements because of high sampling rates in the millisecond time scale
The Data is Clear!
Fluorescein in Propylene Glycol
Frequency-domain anisotropy decays (differential polarized phase angle and amplitude ratio) of fluorescein in propylene glycol measured on ChronosDFD using an excitation wavelength of 470 nm (Xenon arc lamp). The emission was collected using a 530 longpass filter. Calculated values for θ = 5.3 ns with R0 = 0.40 and τ = 4 ns, T = 27-28°C.BodipyFL in Water
Frequency responses (phase and modulation) of BodipyFL in water acquired on ChronosDFD using a 471 nm laser diode. The emission was collected through a 520 longpass filter. The data is best fitted with a single exponential decay time of 5.87 ns (χ2 = 0.97).Product Specifications for ChronosDFD
Light Source
- Laser diodes (nm): 370, 405, 436, 473, 635, 690, 780, 830
- LEDs (nm): 280, 300, 335, 345, 460, 500, 520
- Pulsed Lasers: Supercontinuum, Ti:Sapphire, Pulsed Laser Diodes
Focusing & Collection Geometry
- Parallel beam design for precise polarization measurements
Polarizers
- UV grade Glan-Thompson with L/A=2.0
Detectors
- Fast PMT
- hybrid PMT
- APD
Detection Modes
- Photon counting electronics
Wavelength Range
- 200 nm to 1700 nm (detector dependent)
Max Counts Range
- Up to 80 million counts/s (using hybrid detectors)
Lifetime Measurements Range
- 10-12 s to 1 s
Operating System
- Windows 10
Power Requirements
- Universal power input: 110 - 240 V, 50/60 Hz, 400 VAC
Dimensions (mm)
- 540 (L) x 425 (W) x 235 (H)
Weight (kg)
- 25
Example Configuration for ChronosDFD
Product Accessories for ChronosDFD
Product Software for ChronosDFD

Vinci
A comprehensive multidimensional fluorescence spectroscopy software program designed to enhance the capabilities and performance of ISS spectrofluorometers.
Learn MoreProduct Resources
-
Anisotropy Decay Measurements
-
Fluorescence Basic Instrumentation
-
Fluorescence Lifetime
-
Fluorescence Polarization
-
Fluorescence Spectroscopy
-
Long-Wavelength Polarization Standards
-
Measurement of Fluorescence Quantum Yields on ISS Instrumentation Using Vinci
-
Polarization Measurements: Parallel vs. Non-Parallel Beam Geometry
-
Phasor Plots for the Analysis of Time-resolved Fluorescence
-
What is Total Internal Reflection Fluorescence (TIRF)?
-
A Critical Comparison of Xenon Lamps
-
“Solution-Binding and Molecular Docking Approaches Combine to Provide an Expanded View of Multidrug Recognition in the MDR Gene Regulator BmrR.” Gunio, D., Froehlig, J., Pappas, K., Ferguson, U. & Wade, H. Journal of Chemical Information and Modeling, 56(2), pp. 377–389, 2016, Feb. doi: 10.1021/acs.jcim.5b00704.
-
“Amphiphilic Residues 29–44 of DREAM N-Termini Mediate Calmodulin:DREAM Complex Formation.” Gonzalez, W.G., Arango, A.S. & Miksovska, J. Biochemistry, 54(28), pp. 4391–4403, 2015, Jul. doi: 10.1021/acs.biochem.5b00251.
-
“Strain Promoted Click Chemistry of 2- or 8-Azidopurine and 5-Azidopyrimidine Nucleosides and 8-Azidoadenosine Triphosphate with Cyclooctynes. Application to Living Cell Fluorescent Imaging.” Zayas, J., Annoual, M., Das, J.K., Felty, Q., Gonzalez, W.G., Miksovska, J., Sharifai, N., Chiba, A. & Wnuk, S.F. Bioconjugate Chemistry, 26(8), pp. 1519–1532, 2015, Jul. doi: 10.1021/acs.bioconjchem.5b00300.
-
“The N-terminus of TDP-43 promotes its oligomerization and enhances DNA binding affinity.” Chang, C.-k., Wu, T.-H., Wu, C.-Y., Chiang, M.-h., Toh, E.K.-W., Hsu, Y.-C., Lin, K.-F., Liao, Y.-h., Huang, T.-h. & Huang, J.J.-T. Biochemical and Biophysical Research Communications, 425(2), pp. 219–224, 2012, Aug. doi: 10.1016/j.bbrc.2012.07.071.
-
“Cotranslational Protein Folding within the Ribosome Tunnel Influences Trigger-Factor Recruitment.” Lin, K.-F., Sun, C.-S., Huang, Y.-C., Chan, S., Koubek, J., Wu, T.-H. & Huang, J.J.-T. Biophysical Journal, 102(12), pp. 2818–2827, 2012, Jun. doi: 10.1016/j.bpj.2012.04.048.
-
“Efficient Isolation of Pseudomonas aeruginosa Type III Secretion Translocators and Assembly of Heteromeric Transmembrane Pores in Model Membranes.” Romano, F.B., Rossi, K.C., Savva, C.G., Holzenburg, A., Clerico, E.M. & Heuck, A.P. Biochemistry, 50(33), pp. 7117–7131, 2011, Jul. doi: 10.1021/bi200905x.
-
“Production of Ribosome-Released Nascent Proteins with Optimal Physical Properties.” Ziehr, D.R., Ellis, J.P., Culviner, P.H. & Cavagnero, S. Analytical Chemistry, 82(11), pp. 4637–4643, 2010, Apr. doi: 10.1021/ac902952b.
-
“Excited-state lifetime studies of the three tryptophan residues in the N-lobe of human serum transferrin.” James, N.G., Ross, J.A., Mason, A.B. & Jameson, D.M. Protein Science, 19(1), pp. 99–110, 2009, Nov. doi: 10.1002/pro.287.
-
“Chain Dynamics of Nascent Polypeptides Emerging from the Ribosome.” Ellis, J.P., Bakke, C.K., Kirchdoerfer, R.N., Jungbauer, L.M. & Cavagnero, S. ACS Chemical Biology, 3(9), pp. 555–566, 2008, Aug. doi: 10.1021/cb800059u.
-
“Fructose-1,6-bisphosphate Acts Both as an Inducer and as a Structural Cofactor of the Central Glycolytic Genes Repressor (CggR).” Zorrilla, S., Chaix, D., Ortega, A., Alfonso, C., Doan, T., Margeat, E., Rivas, G., Aymerich, S., Declerck, N. & Royer, C.A. Biochemistry, 46(51), pp. 14996–15008, 2007, Dec. doi: 10.1021/bi701805e.
-
“Inducer-Modulated Cooperative Binding of the Tetrameric CggR Repressor to Operator DNA.” Zorrilla, S., Doan, T., Alfonso, C., Margeat, E., Ortega, A., Rivas, G., Aymerich, S., Royer, C.A. & Declerck, N. Biophysical Journal, 92(9), pp. 3215–3227, 2007, May. doi: 10.1529/biophysj.106.095109.
-
“Hydration of the Folding Transition State Ensemble of a Protein.” Brun, L., Isom, D.G., Velu, P., García-Moreno, B. & Royer, C.A. Biochemistry, 45(11), pp. 3473–3480, 2006, Feb. doi: 10.1021/bi052638z.
-
“Confined dynamics of a ribosome-bound nascent globin: Cone angle analysis of fluorescence depolarization decays in the presence of two local motions.” Ellis, J.P., Culviner, P.H. & Cavagnero, S. Protein Science, 18(10), pp. 2003–2015, 2009, Jun. doi: 10.1002/pro.196.
-
“Reorientational Dynamics of Enzymes Adsorbed on Quartz: A Temperature-Dependent Time-Resolved TIRF Anisotropy Study.” Czeslik, C., Royer, C., Hazlett, T. & Mantulin, W. Biophysical Journal, 84(4), pp. 2533–2541, 2003, Apr. doi: 10.1016/s0006-3495(03)75058-9.
-
“Time-resolved fluorescence anisotropy studies show domain-specific interactions of calmodulin with IQ target sequences of myosin V.” Bayley, P., Martin, S., Browne, P. & Royer, C. European Biophysics Journal, 32(2), pp. 122–127, 2003, Jan. doi: 10.1007/s00249-002-0274-7.
-
“Equilibrium Binding of Estrogen Receptor with DNA Using Fluorescence Anisotropy.” Ozers, M.S., Hill, J.J., Ervin, K., Wood, J.R., Nardulli, A.M., Royer, C.A. & Gorski, J. Journal of Biological Chemistry, 272(48), pp. 30405–30411, 1997, Nov. doi: 10.1074/jbc.272.48.30405.
-
“Structural and Thermodynamic Characterization of T4 Lysozyme Mutants and the Contribution of Internal Cavities to Pressure Denaturation.” Ando, N., Barstow, B., Baase, W.A., Fields, A., Matthews, B.W. & Gruner, S.M. Biochemistry, 47(42), pp. 11097–11109, 2008, Sep. doi: 10.1021/bi801287m.
-
“Degradation Kinetics of Indocyanine Green in Aqueous Solution.” Saxena, V., Sadoqi, M. & Shao, J. Journal of Pharmaceutical Sciences, 92(10), pp. 2090–2097, 2003, Oct. doi: 10.1002/jps.10470.
-
“Characterization of Fluorinated Catansomes: A Promising Vector in Drug-Delivery.” Rosholm, K.R., Arouri, A., Hansen, P.L., González-Pérez, A. & Mouritsen, O.G. Langmuir, 28(5), pp. 2773–2781, 2012, Jan. doi: 10.1021/la2039834.
-
“Indocyanine green-loaded biodegradable nanoparticles: preparation, physicochemical characterization and in vitro release.” Saxena, V., Sadoqi, M. & Shao, J. International Journal of Pharmaceutics, 278(2), pp. 293–301, 2004, Jul. doi: 10.1016/j.ijpharm.2004.03.032.
-
“Enhanced photo-stability, thermal-stability and aqueous-stability of indocyanine green in polymeric nanoparticulate systems.” Saxena, V., Sadoqi, M. & Shao, J. Journal of Photochemistry and Photobiology B: Biology, 74(1), pp. 29–38, 2004, Mar. doi: 10.1016/j.jphotobiol.2004.01.002.
-
“Water-soluble norsquaraine dyes for protein labeling and pH-sensing applications.” Hovor, I.V., Kolosova, O.S., Sanin, E.V., Obukhova, O.M., Tatarets, A.L., Terpetschnig, E.A. & Patsenker, L.D. Dyes and Pigments, 170(10), p. 107567, 2019, Nov. doi: 10.1016/j.dyepig.2019.107567.
-
“Electronic absorption spectra and fluorescent properties of non-associated 16,17-bis(alkoxy)violanthrone dyes and their dependence on the nature of substituent and solvent's parameters.” Ponomarev, O., Sanin, E., Chepeleva, L. & Roshal, A. Dyes and Pigments, 156(10), pp. 45–52, 2018, Sep. doi: 10.1016/j.dyepig.2018.03.068.
-
“Development and Characterization of a Fluorescent Tracer for the Free Fatty Acid Receptor 2 (FFA2/GPR43).” Hansen, A.H., Sergeev, E., Pandey, S.K., Hudson, B.D., Christiansen, E., Milligan, G. & Ulven, T. Journal of Medicinal Chemistry, 60(13), pp. 5638–5645, 2017, Jun. doi: 10.1021/acs.jmedchem.7b00338.
-
“Development and Characterization of a Potent Free Fatty Acid Receptor 1 (FFA1) Fluorescent Tracer.” Christiansen, E., Hudson, B.D., Hansen, A.H., Milligan, G. & Ulven, T. Journal of Medicinal Chemistry, 59(10), pp. 4849–4858, 2016, May. doi: 10.1021/acs.jmedchem.6b00202.
-
“Characterization of the Photophysical, Thermodynamic, and Structural Properties of the Terbium(III)–DREAM Complex.” Gonzalez, W.G., Ramos, V., Diaz, M., Garabedian, A., Molano-Arevalo, J.C., Fernandez-Lima, F. & Miksovska, J. Biochemistry, 55(12), pp. 1873–1886, 2016, Mar. doi: 10.1021/acs.biochem.6b00067.
-
“Tetraaryl-, Pentaaryl-, and Hexaaryl-1,4-dihydropyrrolo[3,2-b]pyrroles: Synthesis and Optical Properties.” Krzeszewski, M., Thorsted, B., Brewer, J. & Gryko, D.T. The Journal of Organic Chemistry, 79(7), pp. 3119–3128, 2014, Mar. doi: 10.1021/jo5002643.
-
“Graphene Oxide as a Quencher for Fluorescent Assay of Amino Acids, Peptides, and Proteins.” Li, S., Aphale, A.N., Macwan, I.G., Patra, P.K., Gonzalez, W.G., Miksovska, J. & Leblanc, R.M. ACS Applied Materials & Interfaces, 4(12), pp. 7069–7075, 2012, Dec. doi: 10.1021/am302704a.
-
“Developing Red-Emissive Ruthenium(II) Complex-Based Luminescent Probes for Cellular Imaging.” Zhang, R., Ye, Z., Yin, Y., Wang, G., Jin, D., Yuan, J. & Piper, J.A. Bioconjugate Chemistry, 23(4), pp. 725–733, 2012, Mar. doi: 10.1021/bc200506w.
-
“Ground- and Excited-State Properties of Zn(II) Tetrakis(4-tetramethylpyridyl) Pophyrin Specifically Encapsulated within a Zn(II) HKUST Metal–Organic Framework.” Larsen, R.W., Miksovska, J., Musselman, R.L. & Wojtas, L. The Journal of Physical Chemistry A, 115(42), pp. 11519–11524, 2011, Sep. doi: 10.1021/jp2064408.
-
“Seta-633 - A NIR Fluorescence Lifetime Label for Low-Molecular-Weight Analytes.” Povrozin, Y.A., Kolosova, O.S., Obukhova, O.M., Tatarets, A.L., Sidorov, V.I., Terpetschnig, E.A. & Patsenker, L.D. Bioconjugate Chemistry, 20(9), pp. 1807–1812, 2009, Aug. doi: 10.1021/bc9002458.
-
“Noncovalent Assembly of a Metalloporphyrin and an Iron Hydrogenase Active-Site Model: Photo-Induced Electron Transfer and Hydrogen Generation.” Li, X., Wang, M., Zhang, S., Pan, J., Na, Y., Liu, J., {\Aa}Kermark, B. & Sun, L. The Journal of Physical Chemistry B, 112(27), pp. 8198–8202, 2008, Jun. doi: 10.1021/jp710498v.
-
“Flavin Adenine Dinucleotide Structural Motifs: From Solution to Gas Phase.” Molano-Arevalo, J.C., Hernandez, D.R., Gonzalez, W.G., Miksovska, J., Ridgeway, M.E., Park, M.A. & Fernandez-Lima, F. Analytical Chemistry, 86(20), pp. 10223–10230, 2014, Sep. doi: 10.1021/ac5023666.
-
“Water soluble indodicarbocyanine dyes based on 2,3-dimethyl-3-(4-sulfobutyl)-3H-indole-5-sulfonic acid.” Markova, L.I., Fedyunyayeva, I.A., Povrozin, Y.A., Semenova, O.M., Khabuseva, S.U., Terpetschnig, E.A. & Patsenker, L.D. Dyes and Pigments, 96(2), pp. 535–546, 2013, Feb. doi: 10.1016/j.dyepig.2012.09.007.
-
“Seta-633 - A NIR Fluorescence Lifetime Label for Low-Molecular-Weight Analytes.” Povrozin, Y.A., Kolosova, O.S., Obukhova, O.M., Tatarets, A.L., Sidorov, V.I., Terpetschnig, E.A. & Patsenker, L.D. Bioconjugate Chemistry, 20(9), pp. 1807–1812, 2009, Aug. doi: 10.1021/bc9002458.
-
“Near-infrared, dual-ratiometric fluorescent label for measurement of pH.” Povrozin, Y.A., Markova, L.I., Tatarets, A.L., Sidorov, V.I., Terpetschnig, E.A. & Patsenker, L.D. Analytical Biochemistry, 390(2), pp. 136–140, 2009, Jul. doi: 10.1016/j.ab.2009.03.047.
-
“Synthesis of water-soluble, ring-substituted squaraine dyes and their evaluation as fluorescent probes and labels.” Tatarets, A.L., Fedyunyayeva, I.A., Dyubko, T.S., Povrozin, Y.A., Doroshenko, A.O., Terpetschnig, E.A. & Patsenker, L.D. Analytica Chimica Acta, 570(2), pp. 214–223, 2006, Jun. doi: 10.1016/j.aca.2006.04.019.
-
“Fatty acid sensor for low-cost lifetime-assisted ratiometric sensing using a fluorescent fatty acid binding protein.” Bartolome, A., Bardliving, C., Rao, G. & Tolosa, L. Analytical Biochemistry, 345(1), pp. 133–139, 2005, Oct. doi: 10.1016/j.ab.2005.07.030.
-
“Dual-Labeled Glucose Binding Protein for Ratiometric Measurements of Glucose.” Ge, X., Tolosa, L. & Rao, G. Analytical Chemistry, 76(5), pp. 1403–1410, 2004, Jan. doi: 10.1021/ac035063p.
-
“Reagentless optical sensing of glutamine using a dual-emitting glutamine-binding protein.” Tolosa, L., Ge, X. & Rao, G. Analytical Biochemistry, 314(2), pp. 199–205, 2003, Mar. doi: 10.1016/s0003-2697(02)00586-9.
-
“Glutathione-Activated Emission of Ultrasmall Gold Nanoparticles in the Second Near-Infrared Window for Imaging of Early Kidney Injury.” Zhao, Z., Chen, H., He, K., Lin, J., Cai, W., Sun, Y. & Liu, J. Analytical Chemistry, 95(11), pp. 5061–5068, 2023, Mar. doi: 10.1021/acs.analchem.2c05612.
-
“Liberating Researchers from the Glovebox: A Universal Thermal Radiation Protocol Toward Efficient Fully Air-Processed Perovskite Solar Cells.” Wang, G., Liu, C., Kong, W., Chen, H., Li, D., Amini, A., Xu, B. & Cheng, C. Solar RRL, 3(5), p. 1800324, 2019, Jan. doi: 10.1002/solr.201800324.